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ABSTRACT

Any transistor (or other electronic component) from a production line may be either
perfect or defective. The lifetime distributions of both types are assumed known. We

focus here on the case where the perfect items never fail. Before any item is put in use,

it 1s ofien the case that each production lot is tested to eliminate some of its defectves,

n

A i.e. the lot is subjected to burn-in. Here, the purpose of burn-in is to ensure with a

NN

RY n

W . - . . .
ro given confidence level that an item chosen randomly from the test survivors has a given

3

probability of operating properly for a given time period. This is the same as ensuring,

o
t;'-\"

o
Ry
Y,

afier burn-in, the ratio of the number of defectives to the number of perfects is less than

sorne bound with a desired level of probability. ‘

Three without-replacement procedures are considered. Small sample theory is
investigated for various assumptions about the information available concemning the
_ndmber of @efecdves by using both analydc techniques and simulatdon. Large sample

- . theory is studied, as well. Itinvolves limiting distributions of order statistics, quantile
. procéssés and boundary crossing probabilities of a brownian bridge.

This study shows that the first two procedures are sensitive to the number of

defective items assumed and the performance of the third procedure is not.
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§1.1 The Motivation

Suppose you plan to buy a personal computer ( or any durable good ) and there are
several similar machines available on the market. Do you prefer to buy the one with free
two-year service warranty or to buy the one without any warranty with the same price?
Certainly, people prefer to buy the one with free two-year service warranty. How can
the manufacturers offer this kind of two-year service free warranty without it costing

them too much? Personal computers are mostly made of electronic components;

N}.J" 7

microprocessor, TTL, ROM, RAM, PCB, etc.. In order to ensure a personal computer

L
LA

]
.

flawlessly working for two years, all of its components must be able to work perfectly

’
A

iy
\/'\'-

v
[

for at least two years. Actually, some of its components are likely to fail during this

wns
s

two-year period. Therefore, the component replacement and the required service will

Sy

4
¥
..

cost the manufacturer some money. In order to prevent the occurrence of any failure

s

f
‘ ‘.’ '4. -

during the warranty period and to reduce the replacement and service cost, the parts or

LR

P
“ 5

somponents used to buijld this computer should have some very high pre-specified

A

R

oL n Y

probability of surving for no less than two vears. The underlined part of the above

AT

L

sentence is the (reliability) goal of this research. Here, three burn-in (burn-in will be

5 3

I' l‘ f .

defined in section 1.3) procedures are designed to achieve this goal.
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§ 1.2 Defective Items and Good (Perfect) Items

Let's look at some useful characteristics of the electronic components, for example
the semiconductors. (The application of this research is restricted to the burn-in test of
semiconductors.) The interval right-after-manufacture during which a component (or
item) may fail is often called as an garly fajlure period or infant mortality period.
Failures during this period are often referred as early failures or infant montalities. The
early failure can be caused by process defects or testing error or marginal design
(Rickers (1978), or Jensen and Peterson (1982)). In this research, any item from a
production line is classified as a defective item if its failure is caused by process defect
or testing errors. The others are classified as good ( or perfect ) jtems. Like Jensen and
Peterson (1982), we assume that the life time of any good item is considerably longer
than that of any defective item i.e., the defective items deteriorate faster than the good

items. So, th = failure rate decreases as the testing time goes on.

As pointed out in many papers, the lifetime distributions of semiconductors from
any production lot tend to have bimodal distributions: one mode for the subpopulation
of the defective items and the other mode for the subpopulation of the good items. The
percentage ¢f the defective items is about 2 to 25 percent of the wliolz population. For
example, the life tests on 1k RAMs and 16k ROMs, which i5 discussed in Edwards et
al. (1978), show the proportions of the defective items from 2% to 5%; « study of
transistor reliability at the Bell Laboratonies ( Peck and Zierdt (1974 )) indicates 10% of
defective items; ard an experiment on CMOS trarsistors from RCA (Stitch et al.

(1975)) shows 25% of defectives. Moreover, ihere are many more examples discussed

in Jensen and Peterson (1982).
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Several bimodal life time distributions of the good items and the defective items are
proposed in the literature: mixtures of log-normal distribution by Holcomb and North
(1984), by Jensen and Peterson (1982) and by Hallberg (1977); mixtures of Weibull

distribution by Jensen and Peterson (1982 and 1979) and by Holcomb and North
(1985).

The life time distributions of both the defective items and the perfect items are
assumed known and exponential in this study. Several useful properties about the
exponential distribution are used to develop the burn-in procedures designed in this

research to achieve the (reliability) gnal mentioned in §I.1.

If the life time distributions of both types of items are known but not exponential,
each can be transformed into the exponential distributions by an appropriate probability
(integral) transformation. However, one transformation usually will not make both
distributions exponential, so this transformation can be useless to us. Fortunately, we
can assume that the perfect items will never fail during burn-in and during the required
service period, i.e., semiconductors exhibit infant mortality but not wear out. This kind
of 'no wear out' property of semiconductors is pointed out in several papers: Holcomb
and North (1985); Lawrence (1966); Blakemore, Kronson and von Alven (1963);
Noris (1963); von Alven (1962); and von Alven and Blakemore (1961). Hence, in this
study, the life time distributions of the defective items will be assumed known
exponential with parameter (mean time to failure) 1 and the perfect items will be

assumed to never fail, i.e., the mean time to failure of the perfect items is infinite.
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ﬁ § 1.3 Burn-In: the Approach to Achieve Reliability Goal

The cost to any manufacturer of giving its customers a free two-year service
warranty can be minimized, if all the parts and cornponents used to build his machines
are all good items based on the previous section's discussion. However, no
manufacturer can guarantee that any product from its production lines is always perfect.
(As given in the previous section, the percentage of the defective items ranges from 2%
to 25%.) Mest manufacwures admit that some portion of their products are not perfect.

To reduce the number of defective items from a production line to a tolerable limit, we

M may try to improve the design of product. or use production process control, or do

"?_;Z-_ some after production inspection (Ricker 1978, or Jensen and Peterson 1982). In this

« research, only after production inspection is considered and three without replacement

(:'_‘-".-'. procedures are developed to eliminate some of the defective items and to reduce the

g number of defective items to an acceptable ievel. These three procedures require all the
: items of the production lot to be put on test (with stress) to remove the defective items

By

through failure. This kind of test for electronic components is often called burn-in.

In this research, the purpose of burn-in is to achieve the reliability goal, given in §
1.1, that is:
A very high probability, say o, is guaranteed srauch that any
component which has survived burn-in will have & nre-specifiecd chance,
say p, to survive longer than its required service period. (I.3.1)
That is at most some fixed small proportion of the tested production lot could remain
defective after the burn-in test is completed. Equation (I1.3.1) will be formalized in the

next sectinn.
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5
As pointed out before, the defective items tend to fail during their early lives, infant
mortality, That is: the failure rate is decreased as buru-in goes on. So, burn-in can be
used to eliminate the defective items effectively. Although, we don't want to put the
defective items into the assembly line, we also don't want to waste our time and
precious resources on any unnecessary burn-in. A very good discussion about the
reasoning for considering burn-in is presented in Foster (1976). In addition, an

excellent paper discussing all aspects of burn-in is Kuo and Kuo (1983).
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§ L4 Modeling

AN

E.. How can we be guaranteed that the desired reliability goal (1.3.1) is achieved after
EE burn-in? For any production lot of semiconductors, the proportion of the defective
t:j::: items in this lot is unknown to us. We should try to reduce this proportion to an
l(- acceptable level. Here, burn-in is used to accomplish this. How can we say that this
NS goal is obtained through burn-in? First, let's establish our mathematical model for the
? rcliability goal (1.3.1).

i

'::-}, First of all, we have the following notations:

".r m: the number of the defective items in a given bumn-in lot when this lotis to be
tested.

n: the size of burn-in lot or the total numnber of items being put on test.

t  the required service period (i.e., two years free service warranty period) of any
itemms which passed burn-in.

T: duration of burn-in.

J1: the number of failed defective iterns during a burn-in test with period T.

p: e pre-specified level of chance that any randomly chosen item which has
passed burn-in would be able to have a useful service period t, i.e., the
minimum 1equired reliability for items which survive burn-in.

¢:  the desired minimum confidence level with which we assert that the reliability of

those items which survive burn-in exceeds p.

F(s): the cumulative distribution function of the life time distribution of the defective

items. Here, we assume F(s) = 1 - exp(-s) for s from 0 to oe.
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So, the reliability goal (I.3.1) can be formulated as
P(1-((m-ip)/(n-Jp))(1-exp(-) 2 p ) 2 «, (1.4.1)
where m-Jy is the number of defective items left after burning-in is completed and
which is still unknown after the test; n-J; is the number of items, defective and perfect
items, which are still useful after burning-in; and 1-exp(-t) is the chance that a passed
defective item will fail before completing another t hours of service. Hence, (m-Jp)/(n-
g J1) is the conditional chance that any randomly chosen passed burn-in item is a
defective one and 1 - ((m-J1)/(6-I1))(1-exp(-1)) is the chance that any item, which has
. passed a burn-in test with duration T, can complete a service with period t, i.e., the
: reliability of a randomly chosen item which has survived burn-in is

R(t; T, m, n) = 1 - ((m-JT)/(n-J7))(1-exp(-t)). (1.4.2)

Notes:
1. Here, J7is randomand T can be a fixed value or given by the stopping rule used.
Lo 2. R T,m,n)=1-({(m-Jp)/(n-J1))(1-exp(-t)) (1.4.3)

: R{t; T, m,n)2 p

<=>Jr 2 (m(1-exp(-0)-n(1-T)H/(r -exp(-t))

- <=> Jp 2 mo, (1.4.4)
..':::_': where
®
w0 mo = [mo*] if mo* = [mo*] or mo = [mo*]+1 if mo* > [mo*] and
53 mo* = (m(1-exp(-0)-n(1-p))/(p -exp(-t)). (1.4.5)
_f:: (Note: Define [x] as the greatest integer less than or equal to x.)
1 6.
o 3. P(1-((m-Jp)/(n-Jp)(t-exp(-0) 2 p )2«
YR
- <=>P(Jrzmo)2a. (1.4.6)
J'.L:"
a
..,
:I:}'
b
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Therefore, the reliability goal (1.4.1) is achieved if the probability of eliminating at
least mo defective items through burn-in is at least o.
The number of the defective items, m, in a burn-in lot is unknown, so mo is
unknown. A reasonable value of m or its estimator can be used to develop the
bumn-in procedures.
Both mo* and mo are non-decreasing functions of m. If the assumed value of m
is larger than its true value, then a conservative rule is obtained.
If t = o, mo* = (m-n(1-1))/p. This is the case that the desired service period of
any passed burn-in item is infinite.
Rewriting (1.4.4), we have
Jr 2 mo
<=>m-Jr <m- mo, (.47
where m - J is the number of the defective items passing burn-in. So, the
reliability goal (I.4.1) can be obtained, if a conservative upper bound, say y, for
m - J is given. That is to find a stopping rule such that
P(m-Jrsp)2a. (1.4.8)

Marcus and Blumenthal (1974) develop a very good screening procedure to

ensure (1.4.8). Their idea will be investigated further in chapter 2.
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§ L5 Existing Non-Replacement Burn-In Procedures

There are many burn-in procedures existing in the literature. For any item which
failed during burn-in, some of these procedures do not replace this item with an un-
tes'zd item, while some of them do. The three burn-in procedures developed in this
research are all non-replacement procedures. Hence, let's only look at the existing non-
replacement burn-in procedures. Since the with-replacement procedures are not our
focus, they will not be discussed here. From now on, the burn-in procedures will be

the procedures without replacement.

Basically, the burn-in procedures can be classified into the following two
categories: (1) Sequential Procedure: Marcus and Blumenthal (1974); (2) Fixed Time
Procedure: Lawrence (1966), Washburn (1970), and Watson and Wells (1961).

Let's look at the results that these procedures obtained:

(a) Marcus and Blumenthal (1974): A sequential screening procedure is obtained
such that the remaining number of defective items is less than some pre-
specified number with, at least, a desired probability.

(b) Lawrence (1966): Sharp upper and lower bounds on the burn-in time to achieve
a desired mean residual life are obtained.

(¢) Washburn (1970): A mathematical model is established based on cost

considerations. Moreover, the optimal burn-in time is derived to achieve the
maximum performance of this model under total cost constraint.
(d) Watson and Wells (1961): the lower bound of the probability that the mean

remaining life is greater than some specified lower bound is obtained.
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From the above discussion, we know that, except for Marcus and Blumenthal

o

(1974), none of the above procedures can be used to achieve our reliability goal
(I.4.1). In order to achieve (1.4.1), three burn-in procedures are proposed here as
mentioned before. Among these three procedures, one of them is based on Marcus and
Blumenthal(1974). If we compare the inequality (1.4.7) in the previous section and the

inequality (2.1) of their paper, we see that they are the same. This is a very good

starting point.
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§ 1.6 The Ideas of the Three Procedures Developed in This Research

If m, the number of the defective items, is known, then there is no difficulty for us
to obtain (I.4.1) by never stopping burn-in until the mo-th failed defective item is
observed. However, m is unknown. An assumed value of m can be used to design a
burn-in procedure to achieve (I.4.1): Procedure 0 and Procedure I are derived through
this approach. Alternatively, a statistical estimator of m can also be used to design such

a bum-in procedure: Procedure II is developed through this approach.

If an assumed value of m is used, we can find a burn-in length, say @ such that the
probability that the life time of the mo-th failed defective item are less than d is at least
and d is the duration of burn-in. This is the idea of Procedure 0. Or, we can find a
value, say t* and calculate the waiting times between successive failures of the defective
items such that the probability of the first mo waiting times are all less than t* is at least
o. Burn-in continues until some waiting time exceeds t*. Hence, the chance of
eliminating at least mo defective itemns through burn-in is at least a. This the idea of
Procedure 1. Why does this work for Procedure I ? The reason is that the waiting time
between the ith and i+1st failure of the defective items is stochastically less than the

waiting time between the i+1st and the i+2nd failure of the defective items.

If the maximum likelihood estimator of m, m®st = J1/(1-exp(-T)) (Johnson 1961),
is used to replace min (1.4.2), We have

1= ((mest-Jp/An-Jp))(1-exp(-1)) = p (1.6.1)

<=> 1 - Jp(1/(1-exp(-T) - 1)(1-exp(-t)/(n-J7) 2 p
<=>T 2 In{[J/(n-JP)[(1-exp(-TH/(1-k)] + 1}. (1.6.2)
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iu A sequence of stopping times can be obtained by using (1.6.2). This is the idea of

hS Procedure II.
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':;2 CHAPTER I ‘
PROCEDURE 0

§1.1 Introduction

Any electronic component from a production lot can be a good one or a defective
. one. The lifetime distribution of any normal one is assumed known and longer than its
useful period. The life time of any defective one is assumed continuous and to have the

P same distribution as the other acfectives. Here, we assume that the lifetime distribution
N of the defectives in any burn-in lot is known, and that the lifetimes are independent. In

this case, we can assume that they are independent exponential random variables with

' parameter A equal to 1.

When a randomly chosen item is selected from a production line, we don't know if

]

it can survive for a given time period. In order to ensure that this item has good per-

.
.
'u'-

formance with a desired level of probability, it is often the case that each production lot
®
‘o is put on burn-in to eliminate some of its defectives.
e
i
~
™,

A brief summary of this chapter is the following: Section Two is the basic idea for

this stopping rule and the stopping time 0. Some of the properties of this approach will
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be used in the later chapters. A traditional large sample approach to obtain @ is given in
Section Three. The relation between o and several important parameters, like the size of
the defective items m, is discussed in Section Four. A numerical computation algorithm
for d is presented in Section Five and a theorem to show how this algorithm works is
given in Section Six. Under the condition that m/n is a constant, the relation between d
and m is discussed in Se~tion Seven. Additional relations between d and m is consid-
ered in Section Eight, too. The number of the defective items which may left after this
screening procedure is stopped is consider in Section Mine. In the last section, the ex-

pected reliability is computed if this stopping rule is used.
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§1.2 Idea and the Stopping Rule 0

For a given burn-in lot, assume m is the total number of defective items in a burn-
in lot of size n. Our goal is to find the stopping rules which can ensure that the chance
is at least p that any randomly picked item from this lot will survive for a period t after a

burn-in with period D and our confidence in this chance is at least ot. Formulating this,

we have
s P(R; D,mn)2pl2a
b
}‘; where R(t; D, m, n)=1-{(m-Jp)/(n-Jp) }+P(T 2 D+t IT 2 D), D is the duration of burn-

in, and I is the number of defectives that failed during bumn-in up to time D.

oo
i

" r

To ensure P(R(t; D, m, n) 2 p ) 2 a, the following lemma tells us the number of
defectives in the bumn-in lot which must be eliminated through bum-in when all the in-

formation about this lot is available.

Lemma 1.2.1

s ForO<exp(-t)<p<1,t>0,D>0and 0 <m «n,
o R(t; D, m,n)2p) (1.2.1)
""-: can be ensured by screening out at Icast mo defectives from this bumn-in lot,
mo* = {m(1-exp(-1)) - n(1-p)}/(p-exp(-1)) and (1.2.2)
m0 = the smallest integer greater than or equal mo*, (1.2.3)
Proof:

R(t: D, m, n) = 1 - [(m-J;3)/(n-]p)]*P(T<t+DITzD)
E . = 1- [(m-Jp)/(n-Jp)][1-exp(-1)].
' So, Rtt: D,m,n) 2 p
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<=> (m-Jp)+(1-exp(-t)) € (1-p)+(n-Ip)
<=>me(1-exp(-1)) - ne(1-p) < Jp*(p-exp(-1)) (1.2.4)
<=>Jp 2 (m(1-exp(-1)) - n(1-p)}/(p-exp(-1)) = mo*, since p > exp(-t).
<=>Jp 2 mo.

The proof of this lemma is completed.

Using this lemma, we have the following very useful lemma.
Lemma 1.2.2
Forp>0,a>0,t>0and integers n 2 m 2 0, to obtain our reliability goal
R(t; D, m, n) 2 p, burn-in is required and useful if and only if
(n-1)2m 21 + (n-1)+(1-p)/(1-exp(-1)). (1.2.5)
Note:
The inequality (1.2.5) tells us if burn-in is useful then
1 >m/n > (1-p)/(1-exp(-1)) if p > exp(-1)). (1.2.6)
So, when p > exp(-1)), no burn-in is required if m/n < (1-p)/(1-exp(-t)). From now on,
to simiplify our calculation, we will say that
burn-in is useful and required if (1.2.6) is satisfied. In addition, the stopping rule ob-
tained under (1.2.6) is more conservative than the stopping rule under (1.2.5).
Proof:
If m=n then burn-in will not be able to improve the reliability, since the only items left
after burn-in are always defective. So, burn-in is required only when m < n-1. In addi-
tion, from (1.2.4) of the above lemma, we know that burn-in is needed and our
reliability goal is achieved if and only if, for some for some Jp withmzJ 21,
me(l-exp(-1)) - ne(1-p) 2 Jye(p-exp(-1). (1.2.7)
<=> me(1-exp(-t)) 2 (n - Ip)(1-p) + Ip*(I-exp(-t))

s L, I = R -‘A l, o -(', > -_,q‘ J‘,‘J‘N\f,‘\}“q% ~ .
»T "y \ A'n" - - " -\q p L . n\ t, oy
A " L J‘

N L]
5

t

‘\."-"-r.. .'...

AR 7 T LA R
P e P P 7 P e 50 L A 51 A" o A PP e P e T RS VAR S A e L F I g



" i el —% el Lat  FAE EE e S A - e e i A A e 2
L m'tw'vmimm’f'-;"-"\“ﬁ"‘m""“""?"??‘“‘i’ E ahnigen st b -k Sl aad Sad Fat Stie i She ity

n
L

v

s 17
o for some Jp withm2Jp 2 1,
- <=>me(1-cxp(-t}) 2 (n - 1)+(1-p) + 1+(1-exp(-t)). this is the case that J = 1.
<=>mz21 + (n-1)+*(1-p)/(1-exp(-t)). The proof of this theorem is completed.
Define
r=m/n
Smo* = m0o*/m = {[1-exp(-0)] - (1/1)+(1-p)}/(p-exp(-1)),
Smo = mo/m and

$(n-1)0 = (n-1)0/(n-1) where (n-1)0 is mo when m = n-1.

Note:

It's trivial that 0 Sr < 1.

When p>exp(-) and 0 Sr< 1, 1 > sy > 0, if and only if

1 >r>(1-p)/(1-exp(-1)). (1.2.8)

This is the same as (1.2.6), the condition for bum-in,

We have sy ~ smo* (where "A ~ B" means that A is approximately cqual to B)
and s(p_1)o is the largest possible sy This ratio spg is always greater than 0 when
the production lot is required to be tested. In addition, spmy < s(n-1)0 < 1 (and s¢p-1)o -
Smo* = (1/r-1)+(1-p)/(p-exp(-1)) > 0), so the burn-in procedure using 2 stopping rule
based on this idea will terminate with probability one and (1.2.1) will be achieved. In
addition, sy ~ Smo* 18 an increasing function in r which is an unknown constant and
depends on m where m is unknown.We'd like to use some estimate of m, say the upper
(lower) bound of m. If r is more (less) than the true r, then mo/m or mo will be more

(iess) *han its true value. Hence, in the true case, P(R(t; D, m, n) 2 p) is always more
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(less) than o if the stopping rule is chosen so that P(R(t; D, m, n) 2 p) 2 o is true

fus with mreplaced by its upper (lower) bound. So, we have the following lemma.
N
e Lemma 1.2.3:
o

o) If the assumed number of defectives, m, is more (less) than its true value in a burn-in
A lot then a larger (smaller) portion of defective items than necessary will be eliminated
o
- through burn-in. In addition, the duration of burn-in will be longer (shorter) than is
N

truly needed.
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Let's us¢ the above result to define the Stopping Rule 0.0:

A
v

Stop burn-in when the total number of the observed failed defectives

%
<5

R

reaches m,. (S.1.1)

.
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As described before, m is not clearly known in the :eal situation. This rule needs

some modification. (Note: Stopping rule (S.1.1) assures P(R;i,D,m) 2 p) = 1.) Some-
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times an upper bound or(and) a lower bound of m is available. Sometimes the prior

‘{ .f'\

T
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distribution of m is known. Suppose this stopping rule is used with m replaced by an
estimate of the upper bound then we might wait forever before the screening procedure

is stopped simply because the number mo used is larger than the true value of m (i.e.

Do,
PR N S Y
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the number of defectives in this production lot is over-estimated).

o

r
k.
.

For the case of interest to us, the lifetime distributions of defectives are indepen-

-~

dent, identical and known. Qur reliability goal, to screen out at least mo defectives with

Y.

v
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acceptable high probability, can be achieved by never stopping burn-in before some

»

fixed duration of burn-in, say d. Let D be the duration of burn-in. We have the
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following revised Stopping Rule 0.1:
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Stop burn-in at the First Time When D 2 0, (§.1.2)
where d is the lower bound of the duration of burn-in which will ensure P( Jp 2 mc!D

zd)2a.
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§1.3 The Determination of 0: a Large Sample Theory Approximation

How is d determined? This is the topic of this section and §1.5. To screen out
Smo= mo/m proportion of defectives from burn-in, we may try to use 0 = F-1(mo/m)
where F is the cumulative distribution function of the failure time of the defective items.
But this is often not the right choice for us to guarantee that we will have P(R(t; D, m,
n) 2 p) = a when this stopping rule is used. As we may assume that an upper bound of
m is the true m in the previous section, we'll assume that we know m in deriving 9.

More discussions about the relation between A (=F(d)) and m ( and other parameters)

will be given in the next section,

Let Tj be the failure time of the 1th failed defective and A = 1-exp(-d). We have the
following equivalent inequalities:

P(R(t; D=3, m,n) 2 p) 2

(1.3.1)
<=>P(Jlpzm)za
<=>P(Thp<d)2 (1.3.2)
<=>PUpp<A)2u (1.3.3)

where Upyg = 1 - exp(-Tyg). Hence, to ensure (1.3.1), we need to find a d in (1.3.2)

ora Ain (1.3.3) which will inake these inequalities hold.

We have

" . PUmng<4) = J-0<u<A [m!/[(mo -1)!(m-mo)!]] u(mO-1)e(]-y)(M-mo) 4y

| '.._ = Yi=mom(m!/[(m-1)!i)] JAL (1-A)m-i (1.3.4)
f This is an incomplete beta integral, or a partial binomial sum. For a given o, we need
the A with P(U [0 £ A ) = a. This can be found by using the existing tables of the
'.J
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binomial distributions (when m is of small or moderate size). A binomial distribution

"
-

table may not be at hand or it may not cover all the values of our interest. Can we do

o e e o, S
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something other than this? Traditionally, we use a normal approximation and large

sample theory to approximate A. In this section, we'll consider this approach first. In

L)

addition to this, in §1.5, a direct computation scheme to calculate A will be developed.

Let's try to obtain an approximated A for
PUpo<A)=a (1.3.5)
by using the large sample theory of order statistics (e.g. Cramer 1945 or Smirnov
1962). We have

Ym * { (Umo -Smo) / VIsmo(1-smodl } —> N(O,1), if 0< spo<1, (1.3.6)

where s = mo/m.

Using (1.3.6), A can be approximated easily as the following, where z is the 100+c
percentile from N(0,1). Letting

Vm e { (A -spmo) / VIsmo(l-smo)l } = Zo (1.3.7)

and solving it for A, we have

A = sy + 2o Vsmo(1-Smp)] / Y. (1.3.8)

‘: 5 " (
P R .

a
L]
2

ey
[}
1)

In addition, assuming spg—>Sg a5 m —>o0, we have

sy = [1-exp(-0))/[p-exp(-0)]-(1/r)+[(1-p) /(p-exp(-1)] = Spyo*.

PP

LI W N

Using Slutsky's Theorem,

35
P

Ja e a

Vm ¢ { (U -s0) / VIsp(1-sg)] } ---> N(O,1), if O<sp<1. (1.3.9)

Similarly, we have

A = sq + ¢ [s(1-50)] / V. (1.3.10)

o So, d can be, by using (1.3.8),

T T N I Syt ety Wi
L, k.-"-b-&:- PN N i oo
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= -In( 1- 80 - Zg VISmo(1-5moe)] / Vm ) (1.3.11)

or, by using (1.3.10),
d =-In( 1 - sq - zgg V[so(1-5¢)] / Ym ) (1.3.12)

Hence, we have the following theorem.

Theorem 1.3.1

When the assumed m is large enough (225) and r=m/n, the fixed burn-in duration of

this stopping rule, (S.1.1), is equation (1.3.11) or (1.3.12).

+ . mdtnn ¥Ba . socma 2D
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§1.4.1 How pand m Affect A (or J)

We can see if m is overestimated then the duration of burn-in could be much longer

than what is truly required. In the previous section, A is expressed as the sum of two

terms: Spo (Or sg ) and za\’[smo(l-smo)] /ym (or zgV[so(1-59)] / Ym ).

For smjg (or s ), we have defined

So= Smo* = {1(1-exp(-1))-(1-p) )/ {r(p-exp(-1))}

1‘#""’
L

N Y

Y

= {(1-exp(-))/(p-exp(-t)} - ((1-p)/[r(p-exp(-)]} (1.4.1)

By Lemma 1.2.3, syo* (or sp) is @ monotonically increasing function of r. In addition,

AN

"
L2As

LA

L @
ol
N
o
-

;

Smo* = So = (1/r) - [(1-exp(-1))(1-1)}/[r(p-exp(-1)] (1.4.2)

4

[N
4

-.f

is a monotonically increasing function of p, too.

7’
I.
ée L

For the second term, Za"/[smol'smo)] /~Nm (or 2o VIso(1-5¢)] / ¥m ) , its value is

mainly determined by ¥m. This term is not very significant in the determination of A if

m is large enough.

Hence, the value of A is mainly determined by s, (or s ) if m is large enough.
The two figures in the next page can give us the idea about the relation between sy (or
sp ) and A, and the relation between sy (or s¢ ) and @ when m is sufficiently large, and

p and t are fixed.

From the two figures in the next page, we can see that the duration of burn-in

could be extremely long when spq (0r s ) is quite close to 1. This tells us that when

Ao the ;0 (0r S35 ) used is over-estimated we should be very careful, otherwise we will
LX}
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waste a large amount of time in extra burn-in. On the other hand, if sy (or s5) is
under-estimated, the reliability goal P(R(t; D, m, n) 2 p) 2 a may not be achieved. In

reliability context, p is usually very close to 1. This will force sy (or sy ) close to 1,

too. Hence, we should be very careful when this (fixed time) stopping rule is used.

0 _I=0 S 1 0 — 0 5
1-exp(-t) 1-exp(-t)
Figure 1 Figure 2
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§1.5 The Determination of d: a Direct Numerical Calculation

Those d's and A's derived in §1.3 are not appropriate for us to use if any one of
the following occur: n, the lot size, is too small; m, the number of the defective items in
the burn-in lot, is bounded above by a small number; or an accurate value of 0 (or A) is

required. We should use the A by solving (1.3.5) directly if no suitable table of

binomial distributions is availabie, i.e., to solve equation (1.3.5), P(Upg<A)=q,

< numerically.

v

N O
f‘-_‘-' B

-y
@

If we define

h(A) = P(Ump <8) = Zizmo,m{m!/[(m-DINH]} Al (1-4)m-, (1.5.1)

+

The following lemma is clear to us.

Lemma 1.5.1:

A

,‘_,,_
o
PP

For A in (0,1), h(A) is a differentiable function with a positive and bounded derivative

 aa

in A, i.e., h(4) is bounded, continuous and monotonically increasing in A, Note that

'I

Iy

h(A) is a one-one function from [0,1] to [0,1].

I
.

—
5 &
L

Proof:

:

We can consider h(A) as the c¢.d.f. of a uniform order statistic.
h'(A) is a p.d.f. of a beta distribution with parameters o=mo and B=m-mo+1 being

positive integers. So, the proof of this lemma is trivial.

Hence, we have the following binary search to find the unique A with h(A)=a.
A binary search to find the solution of h(A)=a,

ey
P
-

-

rr7,

.
»
. .

........................
--------------------------------------

L v
P
. NN
X
N
o
X
K
o
1]
i
.
B
e
R
s
,
AR
.
3
L]
\
* .'
.l
13 "
"l
[
Q
N
L]
'l
P4
*
7’
.
o
1
Ll
"
F

.............
........................................
..................................



o« &

[%

‘ 4
P g
] (I 4 w4 »
AP, L et
BRSSO RN

-y

.
Al

o

¥

[Ny 24
DO

- v
il

YLy

o
P A
')

IR Attt

Pt

o 1

F_
A

PO AN N 4

(']

Pty
» e .
e

g

¥

L
“w s
SaTa

JLIN

»
L%

!
1

Jaes

AN A

e fq L 8y

.l"l lI r

R AR AT MR R i

. -5
G F

o > Y Mg . - T Sat
.......... e T e e e e e e e e e e e e e e e e e el o ‘._u. ‘F\hﬁ'&'\"\‘ A _‘J"’ N .‘-‘.'\-a\"}

RS RO B LWL L.

i T e i e e R AR I e S T e e A D P R W I DA e NS S

"l pr s T AP - L " HET X T NTTRT RIS TR Ty e e owoRE ARE R
EWETATATNTETCRTRR LT T T WO R LR LT UTATITETY T AT TSR WS NWESAVYITITRS I TRNTTRT Y

26
2) Ap=A+05)if hA) < o

Aip1=Ai-(0.5)1+ L if h(A) > 0.,

A =4 if h(A) =a.
3) Stopif IA;,1-Ajl<e where e is the given error bound.
After 30 iterations, we shall have 1A,,,-Al<10-9, the A value derived through this algo-
rithm which is close to its true value with error less than 10-2. We'll obtain the corre-
sponding d by letting d=-In(1-exp(-A)). The following theorem and its corollary show

that the A derived through this binary search converges to the solution of (1.5.1) =

Theorem 1.5.2:

If h(4) is a differentiable function with a bounded positive derivative for A in (0,1),
then the search algorithm defined in above converges to the A with h(A) = a.

Proof:

For any two positive integer j > i > 0, we have

0 <laj- Al < (1)1, (1.£.2)
In addition,

0 < limit; 5, o, 14} - Ajl < limit; .3 o0 (1/2)I =0,

Hence, {Ai}i=1,oo is a convergent Cauchy sequence which implies that it's a
convergent sequence. So, let limit] .., Aj = A¥.

Assume, for A in (0,1), h(A) € Q < oo,

limit] . o0 Ih(A;) - h(A)! < limitj 5 oo MaXpj<a < Aj lh‘(A)l-lAj - Al

< Qe limiy Ly, c,c,lAj - Ajl = 0. So, {h(4;)} is convergent.

The last step is to show that limitj.see h(d) =h(A*) =a.

Since h(A) is continuous, so limitj_see h(Aj) = h(A*),

..........

I Rl Nl I W LA A
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Suppose h(A*} # a. Since h(4) is a one to one mapping from [0,1] onto [0,1] with

A bounded first derivative, we know that h(A*) # a cannot happen.
:.\'.: The proof of this theorem is completed.
I.\',)l
2
ﬂx:'_- So, this binary search algorithm can be used to derive the desired A up to any de-
<
.-\.:f sired precision. Similar binary search algorithms will be used in the other sequential
A

screen procedures studied in the following chapters.
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§1.6 The A (or 0), from the direct numerical calculation, is an

increasing function in m, ¢ and p when n Is Fixed.

Define A(m,x,p) as the solution of (1.5.1), and h(A) = P(Up g < A) =
Ti=mo,m{m/[(m-1)!if)]JAl (1-A)M-i = &, where mo = the least integer greater than or
equal {m(1-exp(-t)) - n(1-p)}/(p-exp(-t)). We have mo (or mo*) is an increasing func-
tion in p. Using (1.5.1) and using the property of order statistics, we have the
following theorem (without proof).

Theorem 1.6.1:

A(m,a,p) is an increasing function in p.

From lemma 1.5.1, we known that h(A) is an increasing function in A. Hence, we
have the following trivial result.
Theorem 1.6.2:

A(m,a,p) is an increasing function in .

Before we study the relation between A(m,a,p) and m, let ml and m2 be two
positive integers with ml < m2, al and a2 be two positive real numbers with al £ml
and a2 £m?2, and alo and a2o0 be the smallest integers larger than or equal to al and a2,

respectively. We have the following lemma.

L.emma 1.6.1:
(1) Ifml-al>2m2-a2, thenml-alo2m2 - a2o.

(i) Ifml-al €m2-a2, thenml -alo<£m? - a2o.
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Proof:

(i) L.If there is an integer i such that
ml-al2i>m2-a2,
then we have

ml -al2ml-ale2i>m2-a2 2 m2 - a2o.

[

. If there is an integer i such that
i>ml-al>m2-a22i-1.
then
i>ml-al>m2-a22ml-alo=m?-a20=i-1.
3. Ifml -al =m2 -a2, thenml - alo =m2 - a2o0.

1., 2. and 3. prove that (i) is true.

Similarly, we have the following proof for ii).
(ii) 4. If there is an integer i such that

ml-al<i<m2-a2,
then we have
m2-a22m2-a202i> m!-al=ml-alo.

5. If there is an integer i such that
i>m2-a2>ml-al2i-1.
then
i>m2-a2>ml-al2zm2-a20=ml-alo=1i-1.

6. If ml - al = m?2 -a2, then ml -alo=m2 - a2o.

4., 5. and 6. prove that (ii) is true.

The proof of this lemma is completed.
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Let m1 and m?2 be two positive integers, ml < m2 defined as before Lemma 1.6.1,
with values less than two integers nl and n2, respectively, and
mio* = [mis(1-exp(-1))-ni*(1-p)]1/ [p-exp(-t)]
mio = the least integer greater than or equal [mis(1-exp(-t))-nis(1-p)]1/ [p-exp(-1)]

where i=1 or 2.

The following coroilary of the above Lemma 1.6.1 is very useful in comparing the

duration of burn-in for different production lots in the same or different burn-in

% rr
2T

’
.

facilities (same n or different n), or in determining the appropriate bumn-in lot size under

LA

the time and cost constraints, Applications of Lemma 1.6.1 and Corollary 1.6.1 will be

seen in this procedure and the other procedures.

Corollary 1.6.1:

u
vy
AR A A |

*( 1) If n2 =nl and m2 > ml, then
e m20* > mlo*, m202 mlo, ml - mlo* >m2 - m20* and ml - mlo 2 m2 - m2o.
‘_\-
s 2) Ifn2>nlm2>ml, ml/nl =m2/n2=rand r> (1-p)/(1-exp(-1)), then m20* >
A

o

mlo¥ m20= mlo, ml - mlo* «m2 - m20¥ and m! - mlo £ m2 - m2o0.

Note: Using Lemma 1.2.2, r > (1-p)/(1-exp(-t)) means that burn-in is required for this

Y

production lot.

B Proof:
.
o Let, fori=1and 2, ai = mio* and aio = mio.
For i=1,2
,,\_ mi-miv* = mi-[mis(1-exp(-t))-ni*(1-p)} / [p-exp(-t)] .
0.
e 1)  Weonly need to prove that m1 - mlo* > m2 - m20*, the other results are trivial,
\'i
"f (m1-mlo*) - (m2-m20%), since nl=n2,
. .N:-: - . s oo N
o = (-mis[(1-p)/ip-exp(-U)}}-{-m2e{(1-p)/(p-exp(-1))]}
.
.‘.
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= (m2-m1)e[(1-pV/(p-exp(-1))] > O.

Similar to 1), we need to prove m1 - mlo* < m2 - m20*,
(m1-mlo*) - (m2-m20+)

= (m2-m1)*[(1-exz{-))/(p-exp(-0)] - (n2-n1)*[(1-p)/{p-exp{-1))]
= (n2-nl)er* (1-exp(-1))/( p-exp(-t)) - (n2-nl)*(1-p)/(p-exp(-t))
= (n2-n1)*{r+(1-exp(-0)/( p-exp(-t) - (1-p)/( p-exp(-1))

>0

<=> 1> (1-p)/(1-exp(-1)).

The proof of this corollary is completed.

Note: For n2=n1=n, let m!/n=rl, m2/n=r2.

1.

9

(WX}

m20 2 mlo if m2 > ml. This corollary clearly gives us the proof of Lemma 1.2.2.
It also tells us that, in the same burn-in facility, more defectives should be screened
out from the burn-in lot with more defectives in it.

ml - ml¢ 2 m2 - m20if m2 > ml. In the same burn-in facility, the lot with fewer
defectives will be allowed to have more defectives stay in it when burn-in is
stopped.

mlo*/n = {rle(l-exp(-1))-(1-p)}/(p-exp(-1)) < {r2+(1-exp(-1))-(1-p)}/(p-exp(-1)) =
m20*/n if m2 > ml. For two burn-in lots with the same lot size, a larger
proportion of items (defectives or perfect) has to be eliminated through the course
of burn-in from the lot with more defectives.

mlo¥*/ml = (1-exp(-0))/(p-exp(-0))-(1-p)/{rl+(p-exp(-t))} < (1-exp(-1))/(p-exp(-1))
-(I-p)}/{r2+(p-exp(-1))} = m20*/m2 if m2 > ml. In the same burn-in facility, a

larger portion of defectives must be eliminated through burn-in from the lot with
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"‘ more defective items in it. The results of 3 and 4 are similar, but they concern
- different ratios.

"

§jiv‘_ Note: For n2 > nl, let ml/n=r1, m2/n=r2.

b 1. mlo £m20if ml < m2. For the lots from the same production line, more
J . . [ .
Mot defecives must be eliminated through burn-in from the lot which has more defectives

r \.,

::-_l‘_:: at the very beginning of burn-in.
s

>

2. ml-mlo<m2-m20if ml <m2. This means that, for the lots from the same
production line, more defectives can stay in the burn-in lot, which has more
defectives in it at the beginning of burn-in, when this screen procedure is stopped.

3. mlo*/ml = (1-exp(-t))/(p-exp(-t))-(1-p) }/{re(p-exp(-t))} = m20*/m2 and m1lo*/nl
=re(1-exp(-1))/(p-exp(-1)) }-(1-p)/(p-exp(-t)) = m20*/n2 if m2 > m1. For the
burn-in lots from the same production line, almost the same proportion of

defectives must be eliminated through burn-in regardless of the size of burn-in lot.

For two positive integers 0 < m1 < m2, define
hem1(A) = P(Up 10 < A) = Zizmio,m1 {m1V[(m1-)iH]) Al (1-A)ml-i and
hma(A) = P(Upag < A) = Tjemao ma{m2V/[(m2-1)1iH)]} Al (1-A)m2-i
h(A(ml,o,p)) = a and h,(A(m1,a,p)) = asin §1.5.
We have the following theorem which clearly tells us the relation between A and m if all

the other parameters are fixed.

Theorem 1.6.3:
For fixed n, a and p,

Alml,a.p) < A(m2,a.p) if ml <m2. (1.6.1)

.....
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i Proof:

E’-‘:" Define g(A) = h,5(A)/ hy (A). (1.6.2)
-

b:':: We have

Wl

Tﬁg g(A) = ceAM20-m10.(1.A)(M2-m20)-(m1-mla), (1.6.3)
.j*_:‘: where ¢ is the leading coefficient which is positive.

o Since g(0)=0, h,,(0) = h_,(0) = 0 and h_,(1) = h;(1) = 1, if we can prove that g(A)
i is a strictly increasing function in A for A in [0,1], then we prove h,(A) <h,(A) for
g\--‘\— Ain (0.1). Thus, this theorem is proved, since h(A) is a strictly increasing function in
\“\.\

p{:'_{f; A.

.J'.':"'

Rodn g'(A)/c = (m20-m10)»AM20-m10-14(1.A)(m2-m20)-(m1-m10) - {(m2-m20)-(m1-mlo)}

AM20-m10,(1.A)(m2-m20)-(m1-m10)-1 (1.6.4)
= AM20-m10-14(1-A)(m2-m20)-(m1-m10)-1s {(m20-m10)e(1-A) -

Y Y Y
OO 4
P At
« PR LI
. '.'.‘.‘al- -

[(m2-m20)- (m1-m10)] <A}

> AmQO—mlO-l.(1_A)(m2—m20)-(m1-m10)-1.{(m:;_o_mlo) «(1-A)}, (1.6.5)
by using the first part of Corollary (1.6.1), since

(m2-m20)- (ml-mlo) €0 and m20 - mlo > 0. So,

g'(A)>0<=>0<A< 1. (1.6.6)
Hence g'(A) is a strictly increasing function in A for A in (0,1).

The proof of this theorem is completed.

Note: In the same burn-in facility, this theorem can be used to compare the durations
of burn-in for the production lots from different production lines. It tells us that a

longer duration of burn-in is required for the production lot with more defectives in it.
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§1.7 The Relation between A (0) and m When m/n is a Constant,

For any production lot of an electronic component from a production line, the ratio
of the number of defectives over the size of this lot is usually assumed a constant, r,
which is unknown but a suitable value of it is used. In addition, the size of the burn-in
facility, n*, may be given. Therefore, it is very important for us to discuss the relation
between A and (m,n) pair when m/n is a constant, and to see if we can find a sequence
of appropriate (m,n) pairs with these n's less than n*, n is the least integer greater than
or equal my/r, which will guarantee a relative smaller A if this rule is used. This will be
explained in the following part of this section. The reason for us to study this is that, in
designing a burn-in scheme, we'd like not only to achieve our reliability but also to re-

duce the cost (or duration) of bumn-in as much as possible.

Qe If we can prove that A is a2 monotonic function in m, then we can obtain an appro-
: priate m and its corresponding n to fit the time and the burn-in facility constraint
without any difficulty. But, here, A is not a monotonic function of m as in §1.6. For
fixed o and p, if we plot A(m, o, p) against m, then we will have a jagged/uneven

curve as in the following figure. In this figure, the circled values stand for the "m's

with the same mo.
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Let's investigate A(m) = A(m,,p) anaiytically. From § 1.5, we know that

o A(m) is the solution of Tj=mg m (m!/[(m-)!iN]}Al (1-4)M1 = cr. (1.7.1)
{ ::" In addition, for any positive integer m and 0 <r <1, we have

> mo* = (m(1-exp(-t))-n(1-p))/(p-exp(-t)) and (1.7.2)
"-’E mo = [mo*]+1 if mo* > [mo*] or mo = mo* if mo* = [mo*]. (1.7.3)
‘-: Define n as a function of m: n(m) = [m/r] + 1if m/r > [m/r] or n(m) = [m/r] if

n/r = [m/r].

\:‘:\ So, for any positive integer k, we have

3 (mek)0* = ((m+k)+(1-exp(-0)-n(m+)e(1-p)/(p-exp(-0)

:r ~ (me(1-exp(-1))-n(m)+(1-p))/(p-exp(-1)) + ke((1-exp(-1))-(1/r)*(1-p))/(p-exp(-1))
2 = me* + ke((L-exp(-0)-(A)-(1-p)/(p-exp()

\ = mo* + k*mo*/m = mo*«(1+k/m).

.‘ In addition, there is an integer k1 2 0 such that, for 0 < k < k1,

“r (m+k)o=mo

, (m+k1)0 = mo and

‘i (m+k1+1)0 = mo + 1.

.
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If k1 2 1 and (m+k1)0 = mo, let's compare the solution of

o = T momml/[(m-i)tin]}Al (1-4)m-i (1.7.4)
and the solution of
o = Zic(mek1)0,(mek )| K DY[((m+k1-D1iD]) Al (1-aym+k1-i

= Tiemo (mek1) { MAKDVI((m+KD)-D1D]) Al (1-4)m+k - (1.7.5)
If we let A be the probability of failure, then (1.7.4) is the probability of at least mo
failures in m trials and (1.7.5) is the probability of at least mo failures in m+k]1 trials. If
both of (1.7.4) and (1.7.5) are equal to @, it is clear that the solution, A(m), for (1.7.4)
is greater than that of (1.7.5), A(m+k1).

Similarly, if k1 2 1 and (m+k1)0 = mo+1, let's compare the solution of
0 = Xiomo,m (mu/[(m-D)1iD] }Al (1-Aym-i (1.7.6)
and the solution of
o = Zi=(m+k1)o,(m+k 1) { m+KDI/[((m+k1)-i)1iN]}Al (1-4)m+k1-i
= Ziemo+1 (m+k 1) (urk DI/I((m+k1)-)1iN] } Al (1-aym+k1-i, (1.7.7)

If k1 = 1, using the same argument as the above, we have A(m) < A(m+1). If k1 2 2,

the relation between A(m) and A(m+1) is not quite clear. Summarizing these results, we

have the following lemma.
Lemma 1.7.1:
If (m+1)0 = mo, then A(m) > A(m+1).

If (m+1)0 = mo+1, then A(m) < A(m+1). -

Using Lemma 1.7.1, we can simplify our search for the minimum A(m)'s for all m

< ner. So, this lemma can be used to help us in setting the most economic lot size of the

burn-in facility if an assumed r is used and the maximum possible lot size is given.
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4;"':: $1.8 Additional Relations between m and the Stopping Time 9.

i

» o This stopping rule is a fixed time stopping rule which is different from all the other
:‘ 2 three (sequential) rules which will be discussed in the following chapters. The possible

' tjj available irformation about m can be used to improve the accuracy of d (or A) as men-
tioned in the above. @ (or A) can be derived easily, according to each case presented
: . below about the available information about m, by following the results mentioned in

:.:-‘_. §1.3 and §1.5.

o

-i:s._ For an assumed value of m, say me, let r*=me¢/n. Based on the available informa-

tion about m, we have

me*0 = [me(1-exp(-1))-n(1-p)}/(p-exp(-1)}, and (1.8.1)
Smeo=mee/me=me*o/me*={[1-exp(-1)] - (1/re*)*(1-p)}/(p-exp(-1)) if m*/n=re. (1.8.2)
Following (1.3.11), we have
. , 9¢ = -In( 1- smeg - 2o VIsmeo(1-5meg)] / Vme ) . (1.8.3)
.‘,”_..'

As discussed in §1.4, when me is sufficiently large, o¢ mainly depends on speq.

=

Hence, if the binary search algorithm, §1.6, is used in finding A (or 9), then A (or 9)

mainly depends on m-mo, rather than on m.

As in Lemma 1.2.3 and Theorem 1.6.3, if me is larger than true m, then the dura-
i tion of burn-in is longer than what is truly needed, i.e., 9¢ > 9. This is the case when m

B 15 over-estimated. If me is smaller than true m, then we might not be able to achieve our

reliability goal P(R(t; D=d®, m,n) 2 p) 2 o
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The duration of this stopping rule is d, a fixed constant. Hence the expected dura-
tion of burn-in is d. This is not the same as the duration of the other three stopping
rules, as they are random, which will be seen in the followin, chapters.

When an estimate of m, mé¢, is used in this stopping rule, the assumed reliability
of a random!y chosen item from an after-burn-in production lot is
P(T; <0, T2<9, ..., Tpeg <9 ) =P(Tpep <9) (1.8.4)
which is at least « according to equation(1.3.6) and Lemma 1.2.3 if me is at least true
m.
Note: the probability (1.8.4) depends on true m. In this case, when an upper bound of
m is used, a lower bound of this probability, P( T} <9, T3 <9, ..., Typyg < 9 ), is ob-
tained, since a larger portion of defectives could be eliminated. More accurate value of

this probability can be obtained if more accurate information about m is available,

It M~P(M=ml0) is the prior distribution of m, to achieve P(R(t; D, M, n)2p)2a by
using this screen procedure, we need to find the d with
p ((1-)(1-exp(-0) €menP(Tmo < ) P(M=mI8)+P(M<n={(1-p)/(1-exp(-1))}) =
or to find the corresponding A=1-exp(-d) with

Zn-[(1-)/(1-.:xp(.())]SmS,,P(UmO < Ay P(M=mlB)+P(M<ne{(1-p)/(1-exp(-t)}) = o

The left hand side of the above equation is clear to us which is an increasing function in

A with bounded first derivative for A in [0,1]. Hence, the binary search algorithm de-

i
T

fined before can be used to find the appropriate A with the desired level of accuracy.
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§1.9 The Number of Defectives Left after Burn-in

Denote Ly as the number of defectives left in the burn-in lot when this burn-in

procedure is stopped with duration d. We know that Ly=m-J3, the number of defec-

tives left after burn-in, is the number of defectives at the beginning of burn-in minus the

L

number of defectives been screened out during burn-in, Marcus and Blumenthal (1974)

‘-l
e
"~

Y
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-

-

E l-
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have a detailed study of P( Ly< ¢), where ¢ is the allowed maximum number of defec-

tive left after burn-in being stopped, about the case that m is unknown. Their rule is

N
_ :::i'.: conservative.
o
K For the case m is given, the probability that the number of defectives left, after
-
:j:: burn-in being stopped, will not exceed ¢, for any given ¢, is
:f::: P(Ly <¢lm)
= P(Jpzm-¢ Im) (1.9.1)
153:31 = Zjm-qmPUJp=jlm). (1.9.2)
o
J . P
e To solve this, we have P(J5=jlm)
o =P(Tj < dIm) - P(Tj41 < dIm) (1.9.3)
b =P(Tj <, Tj31 > lm) (1.9.4)
.-r-’ = P(Uj < 1-exp(-0), Uj+1 > 1-exp(-d) | m) where U;=1-exp(-T;) for i=j,j+1 (1.9.5)
Sl . .
- = {(m!)/[(j-l)!(m-j—l)!]}J‘O' -exp(-d) ,[pr(_a)'l(u_i)l'l(l-uJ'+1)m'J‘1 dujdujs
n )
s = ((m)/[j!(m-)!])[1-exp(-2) J[exp(-d) M. (1.9.6)
. It is a well-known that J) ~ binomial(m,1-exp(-0)). To stop at Jj=j tneans that j failed
defectives were observed before d. The probability for the occurrence of any failure
o before 3 is 1-exp(-). Hence the distribution of J3 should be binomial. From (1.9.1)
%
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and (1.9.2), we have that P(Ly < ¢lm) is a partial sum of the above binomial
distribution. This probability can be calculated directly or obtained easily by using a

table of binomial distributions or using normal approximation if m is large enough or

compute it directly as before.

If larger m is used as its true value, a conservative rule is used, then, by Lemma

1.2.3. the true value of (1.9.2) will be more than what is calculated.

If m has a prior distribution, say M ~ P(M=ml0) for m=0,1,*+¢,n, then we have
P(Ly <¢)
= Y =00 PM=ml6)-P(J32m-¢ Im)
= 2 m=tn PM=mi€)-Z,_, . P(Jo=jlm)

= L m=0, P(M=ml0) + 2 megtlin P(M=mlB)-X_, o nPJg=jlm) (1.9.7)

L Given the prior distribution of m, (1.9.7) is the probability that the total number of de-
B
b fectives left after burn-in will not exceed the specified upper bound.

2

N g

L 4 Y
4 [
t

-l A

We can use (1.9.7), let it be &, and use the binary search algorithm defined before

I::'jI: to find the appropriate d, d=-In(1-A). This d ensures that with probability a the number
' :QEZ: of defectives remaining will not exceed a given bound, when, M ~ P(M=m:6), the prior
I. ‘l
- distribution of mis given.
. -:: The expected number of defectives left after burn-in can be derived,too. For the
o
N case mis given, we have
- E(Jglm) =me( 1-exp(-d)}. (1.9.8)
o
o If M ~ P(M=mlf), we have
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E(y) = Em:O.n P(M=mlB) « E(Jylm). (1.9.9)
If M ~ binomial(n,r), then
E(J3) = Zne0n (n¥/[(n-m)!(m!)]}(r)™M(1-r)N-Me m [1-exp(-0)]. (1.9.10)

This is the expected number of defectives left after bumn-in if the number of defectives

has the binomial prior.
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§1.10 E(R(t; D=9, m, n))

We already have
R(t; D=0, M, n) = 1 - [(M-J5)/(n-T)]*[1-exp(-1)].
(1.10.1)
Hence, if we are given m, then
E{R(t; D=0, M=m, n)} =E(1 - [(m-]3)/(n-Jg)]*[1-exp(-0)]}
= Zmogjgm {1 - ((m-))/(n-)]e[1-exp(-)]}*P(J=jlm) + P(J<mo)
= Tmosjsm (1-{m-/n-pI[1-exp(-0)]}e {m!)/(j!(m-)1)[1-exp(-3)H[exp(-d)] 5
+ P(J<mo). (1.10.2)
This is the expected reliability after a fixed duration of burn-in, d, when m is given. It
is obtained by summing over all possible reliabilities weighted by their corresponding

probabilities. If m is overestimated, by lemma 1.2.3, this reliability will be more than

what we thought,

If M ~ P(M=ml0) for m=0,1,**+,n, then
E(R(t; D=3, M, n))
= Tm=0 P(M=mi@)+ E{R(t; D=9, M=m, n))
=2m-0aP(M=ml0)*{Zpo<j<m { 1-[(m-§)/(n-})]+[1-exp(-0]} = {(m!)/[j! (m-))!T}
[1-exp(-9)Je[exp(-8)]™J + P(J<mo) }.
(1.10.3)

This the expected reliability after burn-in if this stopping rule is used and M ~
P(M=m19).
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- If we let E{R(t; D=0, M=m, n)}=a in (1.10.2) and solve it for d, this stopping

rule will guarantee E(R(t; D=9, M=m, n))=(or 2)a,when we know (or overestimate)

the value of m. If we let E(R(t; D=9, M, n))=a in (1.10.3) and solve it for o, this
stopping rule will guarantee E(R(t; D=9, M, n))=a, when the prior distribution of m,

R M ~P(M=ml0), is given.

r

e
L LN A
CA] DL

.'l.,lt'ulh\v.\l\" .‘

.

P

L o v VI I S
PG N N A M. W

e T e Y
- ."\d.x’\-

a »
- - - o m .

X,




CHAPTER II
PROCEDURE 1

§2.1 Introduction

The reliability goal P(R(t; D, m, n) 2 p) 2 & can be achieved by screening out

some portion of the defectives from the production lot which is under burn-in as

described in Procedure 0. By considering the waiting time between failures, Wj,
where
W;i=T;-Tj-1and To=0, we get the procedure I. Burn-in is never terminated until the

first W; exceeds some given bound. The screening procedure, Procedure I, is based

on "A Sequential Screening Procedure” by Marcus and Blumenthal in Technometrics

(1974). The goal of their paper is to develop a sequential procedure in order to screen
out the defective items through "burn-in" such that the number of the remaining
defectives under bumn-in at the time of stopping is bounded by a given constant with a

pre-specified probability level. This idea will be modified to develop Procedure 1. In

addition, the key idea here is that 1/E(W;) is monotonically increasing with respect to 1

or P(Wj < t¥) decreases as i is increased for any given positive t*.

‘The following is a brief summary of the contents of this chapter. Section two is a
description of the stepping rule developed in this chapter and the definition of t*, A

general search algorithm for t* is given in section three and another search algorithm

45
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for the t* defined in Marcus and Blumenthal (1974) is given in section four. Sections
five and six consider the relation between t* and m under two different conditions,
Sections seven, eight and nine discuss the computation schemes to obtain t* based on
the different cases about the available information regarding m. The probability
distribution of this stopping rule is given in section ten when the value of m is
known. The expected duration of burn-in is one of the most important criteria to judge
the performance of all the stopping rules developed in this thesis. The computation of
the expected duration of this stopping rule is given in section eleven. The behavior of
the expected duration of this stopping rule is discussed in section thirteen to fifteen
under several different conditions. The last section is a brief comparison between this

stopping rule and the similar rule developed in Marcus and Blumenthal (1974).
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§2.2 The Stopping Rule

Let0=T(p<Tj < Ty <+ <Tp, bethe ordered sequence of times to failure of
the defective items under burn-in. Let W = Tj - Tj.1 for i=1,2, s« ;m be the waiting
times between failures of the defective items. Let J (or Jp) be the number of failed

defectives observed during burn-in when the duration of bumn-in is D.

In order to ensure
R(t;, D, m, n) 2 p, (2.2.1)
we must have J 2 mo, where
mo = the least integer greater than or equal to
{me(1-exp(-1))-n+(1-p) }/(p-exp(-1)), (2.2.2)
with a pre-specified probability, & , as discussed in lemma 1.2.1. We also hope that
this screening procedure can be stopped as soon as J reaches mo (when an assumed m
is given). The goal (2.2.1) can be achieved by finding a t* such that
Wi <t Wy <t ..., Wy < t* with probability at least a. (2.2.3)

This is the same as to find a t* such that, under the stopping rule described below,

PR(t; D,m,n)2p)2 0.

Stopping Rule I:
Stop burn-in at the time when the first j is reached with Wj > t* (S5.2.1)

Under this stopping tule, formulating (2.2.3), we have

P(W <t¥, Wy <t¥, .., W< t*)=PJ>m0) 2 «. (2.2.4)
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Actually, since m is unknown, an appropriate estimate of m is used in evaluating
(2.2.4). The relation between m and t* will be studied in more detail from §2.5 to
§2.9,

Note: In Marcus and Blumenthal (1974), they found the t* to ensure P(m-J< ¢)2a
for some given fixed ¢ when the information about m is assumed to be unavailable.
Here, we try to find the smallest t* with

P(m-J<m-mo)>2a (2.2.5)
when some information about m is available. Inside the parenthesis of (2.2.5), the
right- hand side, m-mo, is their ¢. In evaluating the above probability, we should be
very carcful since the exact value of m is not available. We can derive a lower bound
of this probability based on the available information about m and guarantee that the

true probability is greater than this lower bound.
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(GOAN §2.3 A Binary Search Algorithm for t*
(_ .
[} f-&'
) 4 "»’
}:'- Since Tj for i=1,2, ...,m is an order statistic from a population of size m
i ‘.'.-“.
'\"r\: (assumed) with standard exponential distribution, it is well-known that Wj for
-‘D i=1,2, ..., m are independent and exponentially distributed with ¢.d.f.
R
l\ :\
::;:: 1- exp( -(m+1-i)ow ) (2.3.1)
AR
L (Pyke (1965) or Sukhatme (1937)). Te save the amount of time on burn-in, let's
AT consider the equality case of (2.2.4) only:
- P(W] <t* , Wop<t¥ .. , Wpo<t*)=a. (2.3.2)
sy
In addition,
R P(Wy <t*f, Woy <t¥ ..., W< t*)
N
; N = JT  (1-exp(-(m-i+1)er*))
:;\" 1<i<mo
"
g
N = TI(1 - exp(-iot®)) (2.3.3)
m-mo+1<i<m
& 2 1- X(exp(-iet*))
- m-mo+1<i<m
2 |- { exp(-(m-mo+1)et*) - exp(-(m+1)=t*) } / ( 1- exp( -t*)) (2.3.4)
S > 1 -exp(-(m-mo+1)t* )/ ( 1-exp(-t*)) (2.3.5)
'. All the above formulae are given in Marcus and Blumenthal (1974) as mentioned
';i“_ before. Expression (2.3.5) is extensively studied by them, as well. Most of their
R
':-:;:-. results can be applied to this screening procedure for the case when no information
.}“_f
about m is available. If the left hand side of (2.3.2) is replaced by (2.3.5), the
i:l_cj' solution, t*, of (2.3.2) will guarantee that the number of defectives left after burn-in
e , .
.‘f will not exceed a given upper bound, ¢, with probability at least a under this
P
\. sequential screening procedure. That is to replace m-mo by ¢ which is independent of
A
s
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the unknown m. Note that m-mo is the number of defectives that may remain in the
burn-in lot after burn-in. This is the advantage of their rule. However, any

information about m, which could be very valuable, is thrown away in this case.

In the evaluation of (2.3.5), Marcus and Blumenthal, had a very complicated
computation scheme. In order to simplify the computation in calculating t*, we nced
the following lemma.

Lemma 2.3.1:

Define, for any two positive integers k and n with 1 £k < n,

g1(x)=ITj<ic, (1-exp(-iex)), (2.3.6)
g2(x)=1-{exp(-kex)-exp(-(n+1)*x)}/{ 1-exp(-x)} and (2.3.7)
g3(x)=1-exp(-kex)/(1-exp(-x)). (2.3.8)

Here, gl(x) and g2(x) are increasing functions in x with bounded and positive first
derivatives for x in [0,%0). In addition, g3(x) is an increasing function in x with
bounded and positive first derivative for x in [g,0) where €, nonegative, is the
solution of g3(x)=0.
Note: Equations (2.3.3), (2.3.4) and (2.3.5) are the special cases of the equations
(2.3.6), (2.3.7) and (2.3.8), respectively. The t* derived by solving gl(t*)=a or
g2(t*)=0 can be any number between 0 and oo, but the t* derived by solving
g3(t*)=at is bounded away zero from below. Function g3(x) is nonnegative if x <€.
The t* solved by using g3 is the most conservative one.
Proof:

g1(x) is the product of some strictly increasing functions in x with bounded and
positive first derivative for x in (0, ==). So, gl(x) is an increasing function in x with

bounded and positive first derivative for x in (0, o).
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g2(x)=1-{exp(-ksx)-exp(-(n+1)+x)}/{ 1-exp(-x)}
=1 - Zizk nexp(-i*x).
So, it is clear to us that g2(x) is a strictly increasing function in x with bounded and

positive first derivative for x in (0,).

RIS — el [P PSR B

Similarly, for g3(x), we have lim,___q g3(x) = -e0 and g3(eo) = 1. In addition,

']

W
L
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£3'(x) = {keexp(-kx)+(1-exp(-x)) + exp(-kx)*exp(-x)}/{1 - cxp(-x)}2 >0

for all x 2 0. Hence, g3(x) is strictly increasing in [0.e0) and there is a unique € in
(0,1) such that g3(e) = 0. Moreover, for all x in [g,e), we have g3'(x) < (k+1)/{1 -
exp(-e)}2 < oo,

The proof of this lemma is completed.

This lemma implies that (2.3.3), (2.3.4) and (2.3.5) are monotonically

increasing functions of t*. We have the following corollary.

Corollary 2.3.1

1) Letk=m-mo+1 and n=m in gl(1*), we have (2.2.8) is a monotonically increasing
function in t* for t* in (0, =) with a bounded and positive derivative.

2) Letk=m-mo+1 and n=m in g2(t*), we have (2.2.9) is a monotonically increasing
function in t* for t* in (0,e0) with a bounded and positive derivative.

3) Letk=m-mo+1, we have (2.2.10) is a monotonically increasing function in t* for
* in (g,2) with a bounded and positive derivative, where € is defined in Lemma

2.3.1.

Using the above results, the expressions (2.3.3), (2.3.4) and (2.3.5) are

monotonically increasing functions in t* with ranges in [O,e<], we can easily use a
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binary search to find t*, as we did in finding A in procedure 0, if we let these

expressions equal ot.

A Binary Search Algorithm for Finding t*:

Let y = exp(-t*) and let expression (2.3.3) ( or (2.3.4), or (2.3.5) ) = h(y).
1) Lety=1/2.

2) If h(yp) > &, then yj 41 = yi - (1/2)1+1,

If h(yj) <a,thenyj41 =y + (1/2)i+1_

f!.'v'
Y

If h(y;) = a, then yij+1 =y;.

- 1 &
s

as

3) Stop, if lyj+] - yil e, where e is a given error bound.

bl

4) Let y*=y;.y and t*=-In(y*).

#|
:r’t,

I
L]

'
‘E. After 30 iterations, we will have lyzg- y**| < 10-9 where y** = exp(-1**) and
_ t** is the solution of the corresponding equation. In addition, it is clear that the
f, solution for (2.3.3) is less than that for (2.3.4), and both of them are less than the
solution for (2.3.5). From Theorem 1.2.2, we can prove that the sequences of values
. found through this binary search converge to the solutions of the corresponding
_;.: equations if we can prove that
{\ h1(y)=IT,eic, (1-y}) and (2.3.9)
' 01 h2(y)=1-{yk-yn+1}/{1.y) (2.3.10)
; . are differentiable with bounded negative derivative for y in (0,1), and
o h3(y)=1 - yk/(1-y). 23.11)
_i_-‘ is differentiable with bounded negative derivatives for y in (0,6*) where g*=exp(- €).
., This is another corollary of Lemma 2.3.1.
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Corollary 2.3.2

Functions h1(y) and h2(y) are differentiable with bounded negative derivatives in
(0,1). In addition, h3(y), for any € in (0,1), is differentiable with a bounded negative
derivative in (0,e). So, by Theorem 1.2.2, we have proved that the above binary

search algorithm in finding t* is convergent to the unique true t*,
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tl:::: §2.4 A Fixed Point Iterative Algorithm to Find the Most Loose Bound
o for t*
G
I..'\.-_'
'r':-f'. g3(t*) = Q.
g <=> l-exp(-ket¥)/(1-exp(-t¥)) = c.
o
E\’ <=> (1 - or)*(] - exp(-t*)) = exp(-ket*)
e <=>t* = -In(1 - o/k - In(1 - exp(-t*))/k. (2.4.1)
. So, we can also use a fixed point iterative algorithm to find t* , by using (2.4.1) as
T
.\_\.

x
l.'}'

described below:

.
W

A Fixed Point Iterative Algorithm to Find t* by Using (2.4.1):
1) Letty=-{In(l - a)})/k.
2) Lettj=1ty- {In(1 - exp(-t;.1))}/k fori=1,2,...

RRERA P
PN ':.','_‘...'- 1

3) Stop when I tj - t; 1 | <e, where e is a prespecified error bound.

4) lett*=t;

The two fixed point algorithms in Section 2.7 and Section 2.8 will be used to
compare the duration of burn-in between the case that no information about m is

available (m=n-1) and the case that a smaller upper bound of mis available (m<n-1).

Let g(x)=-In(1-a)-In[1-exp(-x)] for x in (0,e) and & in (0,1). Forany L 2 1, let

h(x)=g(x)/).. The following lemma proves that the above iterative algorithm is

convergent.
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Lemma 2.4.1: ( Convergence of a Fixed Point Iterative Algorithm)

For any p21 and any o in (1-{p/(u+1)}H4,1), the following fixed point iterative
algorithm1s convergent:

1) Let xg =h(0)=-In(1-c)/p.

2) Letxj =h(xi.1) = {-In(1-a)-In[1-exp(-x;-1)]}/u for i=1,2,...

3) Stop whenlxj - x;.; | e, where e is a prespecified error bound.

4) Let x*=x|

Proof:

It is trivial that h(xj) 2 h(xg) for i=0,1,... and h(x) is a continuous and
differentiable function which maps from [x,,e0) into [xg,e0). In addition, h'(x) = -
exp(-x) /[1-exp(-x)]*p}. Using Theorem 3.1 (page 90) of Contel & de Boor(1980),
we only need to prove that Ih'(x)l < 1 for all x in [xg,ee) if & in (1-{p/(u+1)}K, 1).
We have
Ih'(x)l < 1
<=> [ exp(-x) / [1-exp(-x)] /L < 1
<=> exp(-x) < p¢[1-exp(-x)]
<=> [1+p]eexp(-x) < pn
<=>x > -In(p/[1+u]). (2.4.2)
So, we need xg > -In(p/[1+4]) to ensure Ih'(x)l < 1for all x in [xg,e).

Moreover, xg = -In(1-a)/itL.
Hence, xo > -In(u/[1+u])

<=> -In(1-a)/u > -In(u/[1+u])
<=> l-a < (B/[1+uHH

<=> o > - (W/[1+u)H. (2.4.3)

In addition, the upper bound of ais 1.
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In addition, the upper bound of o is 1.

The proof of this lemma is completed.
Note: For u21, we have 020.5. We are typically interested in the case that « is

close to 1 in considering P( R(t; D, m, n) 2p ) 2a. Hence, €=0.5 is good enough.

Corollary 2.4.1:

Foranym,0€m<n-1, 4 =(n-1) - mo +1, and the allowable range for a is
1>0>1-{[(n-1)-mo+1)/{1+ [(n-1) - mo +1}} } (n-1) -mo+1 (2.4.4)
In addition, for mo € n-1,

17221 - { [(n-1) - mo +1)/{1+ [(n-1) - mo +1]} } (n-1) - mo+1 (2.4.5)
The equality of (2.4.5) is true only when (n-1) = mo.

The t*'s solved in §2.3 and §2.4 where we assumed that the true value of m is

Known or an appropriate estimate of it is used. For solving P( W1 <t*, Wy < t¥, ese,
Wmo < t* ) = Equation (2.3.3) = a or Equation (2.3.4)=a or Equation (2.3.5)=q,
different m's (estimated sizes of defectives) will produce different t*'s. In the

following sections, we'll study the relationship between t* and m when n is fixed.
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N § 2.5 The Relation between t* and m When n, o Is Fixed.

For a fixed n, define t*(a,m) as the solution of (2.3.3) or (2.3.4) or (2.3.5)
where m is the assumed number of defective items. Recall the result of Lemma 1.2.3
in Procedure O, in order to ensure P(R(t; D, m, n)2p)2a, we use the (least) upper
bound of m, say “m, as the true m, so that a lager portion of defectives must be
eliminated before the screening procedure is stopped and a higher probability, P(R(t;
D, m, n)2p) is obtained. So, we can use the least available upper bound of ra, ¥m, as
its true value and solve (2.3.2), by using (2.3.3) or (2.3.4) or (2.3.5), to derive the
corresponding t*(a,tm)'s. Now, we face a very crucial problem. Do these t*(o,Um)'s
truly guarantee P(R(t (o,'m); D, m, n)=p)=2c, where m is its true value, if this

screening procedure is used?

Before solving this problem, let m1 and m2 be two positive integers, m1 <m2,

with values less than two integers nl and n2, respectively, nl < n2, and let

mio* = [mis(1-exp(-t))-n=(1-p)] / [p-exp(-t)] and 2.5.1)
mio = the least integer greater than or equal
[mis(1-exp(-1))-n(1-p)] / [p-exp(-1)] (2.5.2)
where i=1 or 2 (as defined in §1.6). The following theorem helps us in solving this
o problem.
: Theorem 2.5.1:
E.:{_ Fornl =n2 =n, given a fixed t¥ > 0 and m]l <m2,
N P(W] < t%, Wy <t*, .., Wpy1o < tim=ml )
Ay e
2:_\;. >P(Wy <t*, Wy <t*, .., W20 < t¥im=m2), (2.5.3)
N
s
g
B
e
N
A
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and

W onio<t*) when the true value of m is mi for i=1,2.

with the same t*.
Proof:
P(W <t¥, Wa<t* ..., Wpp<t*im=ml)

= IT  (1-exp(it*),

aa Nt

m-mlo+1<€i<ml
P(W)<t*, Wo<t* ., Wpo<t* I m=m2)

= Tl 7( 1 - exp(-ist*)) .

m-m20+1<i<m
Using Corollary 1.6.1 in Chapter I, we have
{ml-mlo+1)-(m2-m20+1)
= (ml-mlo)-(m2-m20) = 0,

since m1 < m2. This inequality, (2.5.4), implies that

Q. 1 (1-exp(-it¥)) € T1 (1 -exp(-it*)).
e m2-m2o+1<i<m? ml-mlo+1<i<ml
\qh‘.

N .

e This implies that

N .
s‘i P(Wp <tdy, Wo <% ., Wprg<t* Im=m2)

SP(W <t¥y, Wy <t¥, ., Wipp< t* I m=ml ).

Hence we complete the proof of this theorem.
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where Wj is the waiting time between the i-1st and the ith failure as defined before

Note: This theorem tells us if the same t* is used for two different burn-in lots with
their sizes of defectives being m1 and m2, respectively, in the same burn-in facility
(samme n) then the lot with fewer defectives in it will have higher probability to achieve

the reliability goal, P( R(t; D, m, n) 2p ) 2 a , when this screen procedure is used

(2.5.4)

(2.5.5)

(2.5.6)

» »
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Based on this theorem, if two estimates of m, ml < m2, and (2.3.3) are used in

T

deriving t*(m,) for the same burn-in lot, then the t* corresponding to the smaller

¥ A
"ll

I—.I' " ”' l‘..l ,-' "

estimate, ml, will have smaller value than the t* corresponding to the larger estimate,

AN
_l"!

m2. So, we have the following corollary. This is a trivial result of (2.5 5).

x

Q

Corollary 2.5.2:

A

5

For nl=n2=n, let t*(m,) be the solution of

rd

»

[ul
Lol o)

M- mo+ 1 <igm(1-exp(-it*)) = a. (2.5.7)

-

',"..:,'.{‘ -

If 0 <« ml <m2, then i*(ml,o) < t*(m2,00).

[
P
S v

1,0,

This Corollary tells us a conservative mile is used if an upper bound of m is used

A
AOAC

2l

.

as its true value in tiis screening procedure. Based on (2.3.3), for fixed n, p and «,

t*(m,xr) is a monotonically increasing function in m.

Can we have the results similar to corollary 2.3.2, for the t*(m,)'s based on

(2.3.4) and (2.3.5)? The following two theorems give us the answer.

Theorem 2.5.2

For nl=n2=n, let t*(m,a) be the solution of

1 - { exp(-(rn-mo+1)+t*) - exp(-(m+1)+t*) } / ( 1- exp(-t*)) = o1, (2.5.8)
If 0 « ml < m2, then t*(m1,a) € t*(m2,o).
®- - Proof:
.':: This is the same as to prove, for any t* > 0 and m1 <m2,
2ot 1 - { exp(-(ml-mlo+1)et*) - exp(-(m1+1)et*) } / ( 1- exp(-t*)).
0 > 1- { exp(-(m2-m20+1)et*) - exp(-(m2+1)et*) ] / ( 1- exp(-t*)). (2.5.9)
..
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The above inequality, (2.5.9), is true (since both sides of (2.5.9) are increasing
functions in t* by Lemma 2.3.1)
<=>{exp(-(ml-mlo+1)et*)-exp(-(ml+1)*t*)} <{exp(-(m2-m20+1)et*)-exp(-
(m2+1)=t*)}
<=>1-exp(-ml0o-t*)<exp(-{ (in2-m20)-(m1-m10)}et*)-exp(-{ (M2-(m1-m10) }ot*)
<=> l-exp(-mlo-t*) < exp(-{(m2- m20)-(m1-mlo)}-t*)+{1 - exp(-m20)+t*} (2.5.10)
Using corollary 1.6.1, we have
(ml-m1o)-(m2-m20) 2 0.
This inequality implies that
1 < exp(-{(m2- m20)-(m1-m1lo)}t*). (2.5.10a)
Using corollary 1.6.1 again, we have
mlo £ m20or -mlo 2 -m2o.
This implies that
l-exp(-mln)et*) < 1 - exp(-m20). (2.5.10b)
Here, (2.5.10) is proved by "multiplying” (2.5.10a) and (2.5.10b). Hence the proof

of this theorem is completed.

Similarly, we have the following theorem. The proof of this theorem is almost
the same as the proof of Theorem 2.3.2 and even simpler, thus the proof is omitted.
Theorem 2.5.3:

Let t*(m,o) be the solution of
1 - exp(-(m-mo+1)et*) / ( 1- exp( -t*)) = . 2.5.11D)
If 0 <ml <m2, then t*(ml,a) < t*(m2,a0). Equality holds only when

ml-mlo= m2-m?2o.
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The results of these three theorems may seem a little puzzling at first, If the bumn-
in lot size, n, is fixed and the more defective items are in the lot, i.e., the larger m is,
then the waiting times between early failures should be smaller than the corresponding
ones in the similar lot with fewer defective items. In this occasion, it's pretty natural
for us to guess that P( W <t*, Wy <t*, .., W< t* Im=m2 )2 P( W] <t*,
Wa < t¥, ..., Wn1o < t* I m=ml) for a given t* and m2 = m1. This contradicts the
result of Theorem 2.5.1. The reason for this is that mo is increased faster than the
increase in m, or a larger portion of defectives must be screened out when the burn-in
lot has more defectives in it, since n is fixed. More precisely, as shown in Lemma
1.2.3 in Procedure 0, mo/m is an increasing function of m, a larger (smaller) portion
of defectives should be eliminated through burn-in if the proportion of defectives is
larger (smaller) in the burn-in lot. It takes more (less) time to screen out a larger

(smallcr) portion of the defectives. This is the crucial factor which makes Theorem

2.5.1 true.

o Note: t* is also an increasing function in o and p.
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§2.6 The relation between m and t* when m/n is fixed.

For any electronic component production lot from a production ling, we can
assume that the ratio of the number of defectives to the number from this production
lot is a constant, say r. In this section, we'll study the relation between t* and m when
ny/n is a constant, This is a very important subject, since it can give us the idea about
the minimum amount of burn-in time t*. It is also very useful in designing the burn-in

facility: how large the burn-in lot-size should be.

When the ratio of the number of the defectives in the burn-in lot over the burn-in
lot size, m/n, is a constant, t¥(m,) is a strictly decreasing function in m (or n) as m
(or n) is increased (if some conditions are satisfied), We'll prove that t*(m,a)'s, the

solutions of the equations (2.3.3), (2.3.4) and (2.3.5), have this property in the

following three theorems.

Before stating and proving these theorems, let's define the following relation.

For integers m1, m2, nl and n2 with

D<ml!l «m?,0<nl <n2,ml <nl, m2 <n2 and ml/nl=m2/n2=r. 2.6.1)
Theorem 2.6.1:

For any m1, m2, nl and n2, let t*(mi,a), i=1 or 2, be the solution of
[Tmi-mio+1gj<mi (1 - exp(-(mi+j+1)+t*)) = a. (2.6.2)
If m1, m2, nl, n2 are defined as in (2.6.1), & is in (0,1) and fixed, and for any fixed
t* > (, the following condition is satisfied

L-exp(-(m2-m20+1)et*)e {1-exp(-m20st*) }/{ 1-exp(-t*) }

>{l-exp(-(m1-mlo+ Dt*)e(-exp(-mlost*)/[mlos{ l-exp(-t*)}]}mlo, (2.6.3)

T I N '.-.'.a-_’.-“.~,_'.r“'..“'.~j--,‘.x‘.r,'.»;.s_’.-;.r;.'_'.-;f_',r;-r, (S g “J:,, L
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then t*(ml, ) > t*(m2, a ).

Remark: Denote Wj ;i be the W;j when m=mi, then (2.6.3) denotes the following
probability inequality:

1 - P(W20,m2 > t*)*PW1 m2 <t¥)/P(Wmam2 <t*)

> { 1-[PW1om1 > ™)*P(W1 m1 < tV[P(Wm1,m1 <t*)mlo] }™10 (2.6.4)
Proof:

Using Corollary 2.3.1, the monotone property of the left hand side of (2.6.2), to

prove this theorem is the same as to prove, under the hypothesis of this theorem, for

fixed

t* > 0,

[lj=m1-mlo+1,m1 (1-exp(-(ml-j+1)-t*))

<ITj=m2-m20+1,m2 (1 - exp(-(m2-j+1)-t*)). (2.6.5)
To prove (2.6.5), we have to use the fact that arithmetic mean is greater than
geometric mean,

([Sj=m1-mlo+1,m1 (1 - exp(-(m1-j+1)=t*))}/m1o} ™10

2 [Tj=m1-mlo+1,m1 ( 1 - exp(-(m1-j+1)+t*)). In addition, (2.6.6)
([Zj=m1-mlo+1,m1 (1 - exp(-(m1-j+1)+t*))}/m10} ™10

= {1 - exp(-(m1-mlo+1)et*)s(1 - exp(-mloet*))/[mloe{1-exp(-t¥)}]} M0, (2.6.7)
Using (2.6.2), when mi=m2, we have

[lj=m2-m20+1,m2 (1 - exp(-(m2-i+1)+t*))

2 1 - Xj=m2-m20+1,m2 exp(-(m2-i+1)et*)

=1 - exp(-(m2-m20+1)et*)* { 1-exp(-m20t*) /{ 1-exp(-t*)}. (2.6.8)
From (2.6.5), (2.6.6) and (2.6.7), we know that (2.6.3) is true if

1 - exp(-(m2-m20+1)st*)e { 1-exp(-m20st*) }/{ 1-exp(-t*)}

> {1 - exp(-(ml-mlo+1)st*¥)e(1-exp(-mlot*)/[m10e{ l-exp(—t*)}]}mlo. (2.6.9)
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The proof of this theorem is now complete.

Theorem 2.6.2:

Let t*(mi, o ), i=1or 2, be the solution of

1 - { exp(-(mi-mio+1)et*) - exp(-(mi+1)-t*) }/(1- exp(-t*)) = o (2.6.10)
If m1, m2, nl, n2 are defined as in (2.6.10), o is in (0,1) and fixed, and for any

t* > Q,

{1 - exp(-mloet*)}sexp(-(m1-mlo+1)et*)

< (orz) (1 -exp(-m2o-t*)}eexp(-(m2-m20+1)+t*) (2.6.11)

then t*(ml, o) > (or <) t*(m2, o ).

-
-

NS Note:
.‘-J‘

J
%
i

(1-exp(-mlost*))eexp(-[ml-mlo+1]et*) > (1-exp(-m20st*))sexp(-{(M2-m20)+1]et*)

‘,
5

'y
(Y

can be denoted as

l-'rr
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P(Wm1-mlo-1,m1 < t*)*P(W1o,m1) > t¥)

>P(Wm2-m20-1,m2 < t*)*P(Wm2om2) > t*)

Proof:

We prove this theorem by using the same idea, Corollary 2.2.1, as in proving
Theorem 2.6.1. If we can prove, for fixed t*,

1 - {exp(-(m1-mlo+1)et*) - exp(-(m1+1)t*) }/(1- exp(-t*))

< 1- {exp(-(n2-m20+1)+t*) - exp(-(m2+1)st*) }/(1- exp(-t*)), (2.6.12)

then we have proved this theorem. (The proof of the other case is the same.)

Ingquality (2.6.12) is true.

<=> exp(-(m1-m1o+1)+t*)- exp(-(ml+1)et*)

. > exp(-(m2-m20+1)st*) - exp(-(m2+1)st*).
<=>1-exp(-m1ost*)
~:5.'::f > exp(-(m2-m20+1)et*-(ml-mlo+1)st¥)-exp(-(m2+1)«t*-(ml-mlo+1)t*).
o,
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<=>1-exp(-mlost*)>exp(-[(m2-m20)-(m1-m1o)]+t*)-exp(-((m2-m1)+m10)+t*).
<=>(1l-exp(-mloet*))eexp(-[ml-mlo+1]et*)>(1-exp(-m20st*))sexp(-[(m2-
m20)+1]t*)

The proof of this theorem is now complete.

Theorem 2.6.3:

Let t*(mi, a ), i=1or 2, be the solution of

1 - exp(-(mi-mio+1)et*)/ ( 1- exp(-t¥)) = o, (2.6.14)
If ml, m2, nl, n2 are defined as in (2.6.1) and & is in (0,1) and fixed, then

t*(ml, a ) 2 t*(m2, o).

Note: this is the case of the most conservative bound of (2.2.4). The t*(m, o0 ) in
this case has the desired monotonicity without any additional condition.

Proof:

As the proofs of the previous theorems: using Corollary 2.3.1, we only need to
prove, for a fixed t* > 0,

I - exp(-(m1-m1o+1)et*)/(1- exp(-t*))

<1 - exp(-(m2-m20+1)st*)/(1- exp(-t*)). (2.6.15)
Equation (2.6.15) is true

<=> exp(-(ml-m1o+1)*t*) = exp(-(m2-m20+1)st*). (2.6.16)
From corollary 1.6.1, we know that

(m2-m20)-(ml-mlo) 2 Q. (2.6.22)
Hence, (2.6.14) is true. This theorem is completely proved.

Note:

When m/n is a constant, from the numerical computation, we know that m-mo is the
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most crucial value in calculating t*. Moreover, from the numerical computation of t*

when (2.3.3) or (2.3.4) or (2.3.5) is used, we have the following theorem.
Theorem 2.6.4:

Let my be the smallest positive integer with m0=1. For i=1,2,3,s¢¢

If mj+1 is the smallest positive integer more than a positive integer with mj-
m;0+1=mj;1-mj410.then

*(my, o) St*(my, a ) S eee S t¥(mj41-1, o ) and t*(mj4 1, @) < t*(my, o ),(2.6.23)
when (2.3.3) or (2.3.4) or (2.3.5) is used to solve t*,

Proof:

First, let's consider the case (m+1)0=mo+1, i.e. (m+1)-(m+1)0= m-mo, Using gl,
g2 and g3, which are defined in Lemma 2.3.1 by letting k = m-mo+1 and n¥*=m, we
know that t*¥(m,a) € t*(m+1,0).
For the case that (m+1)0 = mo, i.e. (m+1)-(m+1)0= m-mo+1, we will have
t*(m,o0) > t*(m+1,00), since
L. I(m+1)-(m+1)0+1,m+1(1-exp(-ist*))
= IT(m+1)-(m+1)o+1,m+1(1-exp(-ist*)) { 1-exp(-(m+1)-t*)}/
{1-exp(-(m-mo+1)et*)}
and {1-exp(-(m+1)t*)}/{1-exp(-(m-mo+1)=t*)} is greater than 1.
2. 1- Z(m+1)-(m+1)o+1,m+1(1-exp(-iet*})
=1 - Zm-mo+1,m(1-exp(-i*t*)) +{exp(-(m-mo+1)-t¥) - exp(-(m+1)°1¥))
21 - Zm-mo+1,m(1-exp(-iet*)).

3. 1- exp(-[(m+D)-(m+1)0+1]ot*)/{ 1-exp(-t*))

-
[l FL LA

k -

b i F
LIV A S g

b

Vxaaaa A

=1 - exp{-[m-mo+2]st*}/{1-exp(-t*)} 2 1 - exp{-[m-mo+1]et*}/{1-exp(-t¥)).

i4

S0, this theorem is proved.
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This theorem tells us how to pick the best (n,m) pair ( to ensure the smallest
possible t*) under some cost or lot size constraints. That is, let n* be the available
upper bound of burn-in lot size and m*=[n*er], the greatest integer in n*er. If m*o =
(m*-1)o, then use t*(m*,ct) as the upper bound on waiting time and n* as the lot size;
otherwise, use the closest n, which is small than n*, with t*{Tner]o,a) < t*(m*,x).

Note: In some cases, we may be interested in minimizing the cost per item under

test. But, here, we are interested in getting the most suitable local minimum of

t*(m, o).

-
-

5 - AR : e R T AR T T B AT R e S T e e T AT S e
BT A N NN U SCCMN N Yy e e e e A e o T S e e
e T N, bt N~ . A A e _ e A AN s -

-



BRI R TR i R YYTY IS T R A A A TR AR EATA T TR T NI TV VWL I WETYT IR TR TTERA TR R A PR FRTEERART FRNENU T VR W WU LTI LN Y AN RO R Y

68 !

§2.7 The value of t* - No information about m is available

Consider our reliability function R(t; D, m, n) =1 - {{m-Ip)/(n-Jp) }(1-exp(-t))
and the probability P(R(t; D, m, n) 2 p) = a.. What is the best t* to fit our needs? The
range of m is contained in [0,n-1]. Some information about the upper bound or the
lower bound of m may be available. Here, "m" may have a known prior distribution.
Can we apply the available information about m to get a better t*so that, under this
rule, the duration of burn-in can be shortened and P(R(1; D, m, n) 2 p) is at least

equal to the value specified? We discuss all of these in this and the following sections.

From Lemma 1.2.2, we know if m=n, burn-in does not improve reliability.

Assume m < n-1. In addition, if R(t, D=0, m, n) 2 p, no burn-in is needed, too.

Lemma 1.2.2 also shows that R(t, D=0, m, n) 2 p, no burn-in is required if p< exp(-
) and m <n+{(1-p)/(1-exp(-t))}. So, from now on, assume p >exp(-t) and m >

ne{(1-p)/(1-exp(-1))}.

If mis close to n or no information about m is available, the safest way to have

R(t;D,m,n) 2 p is to screen out all the defectives during burn-in. This tells us to

replace mo by n-1in (2.3.3), (2.3.4) and (2.3.5). Now, we are going to solve

IT{1 -exp(-ist*)} = o . 2.7.1)
i=1,n-1
1+ {(exp(-t¥)-exp(-((n-1)+1)et*)}/(1-exp(-t*)) = @, or (212)
1 -exp(-t*)/{1-exp(-t*)} = u. 2.7.3)
. A A A A At et e e
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The binary searches algorithms used in this section to solve (2.7.1), (2.7.2) and

g
L)

MY WMIES ~ Dbl

(2.7.3) are the same as the binary search defined in §1.Z. When the shortest duration
of burning is required, we'll use the t* by solving (2.7.1). Otherwise,we can use the
t* by solving (2.7.2) or (2.7.3). It is obvious to us that to solve (2.7.1) is much more
complicated than to solve the other two equations. This is one reason why equations
(2.7.2) and (2.7.3) are considered here. Another reason is that an equation like

(2.7.3) had been used extensively in solving t* in Marcus & Blumenthal (1974).

2’

T

v
v

Define
mo,*= n-1- (1-p)/(p-exp(-1)) and
mo,= the smallest integer more than or equal n-1- (1-p)/(p-exp(-t)).
In this case, P( R(t: D, m, n) 2p ) 2a is ensured if we have P( R(t; D, n-1, n) 2p )
2a, that is at least mo, defectives will be eliminated through burn-in. Equations
(2.3.3), (2.3.4) and (2.3.5) can be rewritten as
[Ti=1,monl{1 -exp-iet*)} = a . (2.7.4)
1 - {(exp(-{(n-1) - mo, +1}+t*)-exp(-{(n-1)+1}t*)}/(1-exp(-t*)) = v, (2.17.5)
1-exp( (-{(n-1) - mo, +1])=t*)/(1-exp(-t*)) = a. (2.7.6)

The solutions, t*s, of (2.7.4), (2.7.5) and (2.7.6) preserve the same ordering
property for each t* as the corresponding solution to each of (2.3.3), (2.3.4) and
(2.3.5). This means that the solution of (2.7.4) is less than the solution of (.2.7.5),
and both of them are less than the solution of (2.7.6). Smaller t* implies shorter
duration of burn-in. In order to save the time of burn-in, we should use the smallest

t* if computation is riot a problem.
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o From Theorem 2.5.1, Theorem 2.5.2, Theorem 2.5.3 and Lemma 1.2.3, we
know that the t* obtained in this section is the most conservative one to ensure P( R(t;
D, m, n) 2p ) 2 o when m=n-1 is used. In addition, the t* obtained in this section,
when equation (2.7.4) or (2.7.5) is used, is smaller than the corresponding t* in
Marcus and Blumenthal (1974), since they eliminated more terms in evaluating t*. We

keep the lot size, n, as a parameter in calculating t*. More comparisons between their

results and our accomplishments will be given in §2.14.

' "W
N
'

To derive t*, we can use the binary search algorithm specified in §2.2. For the

A
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soluton of equation (2.5.6), we can also use a fixed point iterative algorithm to find

v
-

E Ty
I t,'-__'.".,-...-",
. T L R AT ¥
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t* as described in section 2.4:

-
‘

L

x
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A Fixed Point Iterative Algorithm to Find t* by Using (2.7.6):
1) Letty=-{In(1-a)}/(n-mo,+1).

2) Lettj=ty- {In(1-exp(-ti_1))}/(n-mo,) fori=1,2,...

-l
’

3) Stopwhen ltj-t,; |<e, where e is a prespecified error bound.

4) Lett*=q

.l."_‘g:'.‘;"v'
w‘v.l .'.'..'.

From Lemma 2.4.1, we know that the sequence {tj} defined by the above

TV V.Y
- TRl A A 4
‘._-...- -
P

A S S

algorithm converges to the solution of (2.7.6). Morecver, this algorithm and a similar
algorithm in the following section will be used to compare the duration of burn-in
between the case that no information about m is available {m=n-1) and the case thata

smaller upper bound of m is available (m<n-1).
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1 §2.8 The value of t* - an accurate upper bound of m is given
N
: :::f Suppose m € nB = mg and m/n=r, then 0 <r < B <1. We have
:‘? mo ~ mo*
) = [me(l-exp(-1)) - no(1-p)}/{p - exp(-t))
_ 3 < {neBe(l-exp(-0)) - n*(1-p)}/{p - exp(-t)} = mgo* ~ mgo. (2.8.1)
, Smo = mo/m ~ {r+(1-exp(-))-(1-p) }/{r=(p-exp(-t))} = so *, (2.8.2)
a SmpBo* = (B+(1-exp(-0))-(1-p)}/{r+(p-exp(-))} = mpgo*/m. - (2.8.3)
__\ Trivially, mo* < mgo* and spo* < smgo*. We'll expect to eliminate a larger number
.,_‘ and a larger portion of defectives from the bumn-in lot than is truly required if an upper
% bound for m is used as its true value. This is similar to the result of lemma 1.2.3 and
, the note ci corollary 1.6.1,
g .. We know that 1 - {(ma-))/(n-j) }+(1-exp(-1)) 2 p if j 2 mo. So, any j = mpo ( 2 mo
;_;: ) will guarantee 1 - {(m-j)/(n-j)}+(1-exp(-t)) 2 p. In additon, P(J 2 mgo ) <P(J =2 mo
) =P(R(; D, m, n) 2 p). To ensure P( R(t; D, m, n) 2 p) 2 a, we can do it by
5 finding a t* such that P(J 2 mpo ) 2 a holds when this screening procedure is used.
; \ To save the amount of bum-in time, we only need to solve for the equality case. This
R is the same as to find a t* with
: POW <, Wy <t*, ..., Wmpo < t*)
= I1 nel-mBo+1<i<n.g (1 -exp(-ist*)) = o (2.8.4)
, We can reduce the amount of computatior in finding t* when some of the
6 ‘significant’ terms in (2.8.4) are deleted as in (2.3.4) or (2.3.5), we have
4 1 - {exp(-(nsB-mpgo+1)et* ) - exp( -(neB+1)et* )}/(1-exp(-1*)) = @, or (2.8.5)
- V- exp(-(neB-mog+ 1) t*)/(1-exp(-t*)) = . (2.8.6)
]
®
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The value of t* can be found by using the binary search described in §2.2, For

solving (2.8.6) we can use the following fixed point iterative algorithm which is

similar to the one in the previous section.

A Fixed Point Iterative Algorithm to Solve t* by Using (2.8.6):
Let tg = -{In(1-0)}/(nB - mpgo +1).

Let t =ty - {In(1-exp(-tj.1)) }/(n*B-mpo+1) fori=1,2,...

Stop when Itj-t;. 1| < e, where e is a prespecified error bound.

Let t*=t;

From Lemma 2.5.2, we know that this algorithm is convergent (by letting
H=n+B-mgp+! and if @ > 1 - {(n+B-mpo+1)/ {1+(n*B-mpo+1)]}). It is obvious to us

that the t; in the above algonithm is the previous tg in §2.7 divided by (n-mo_+1)/( n*8

-mpo + 1 ). So, we can see that the duratior: of burn-in is reduced if a smaller ( more

-:'jj?. accurate ) upper bound of m is given.

g Using Theorem 2.5.1, Theorem 2.5.2 and Theorem 2.5.3, we have the
s : .

A following corollary to tell us how to choose t* if a least upper bound of m is
_‘:-:

A available.

b%.i
A Corollary 2.8.1:

-.* If the least upper bound of m is available, then the t* derived based on this is smaller
- than the t* derived with m=n-1 (no information about m is available).

'y

._.
So, to save the amount of time in bumn-in, use the t* derived by using the least
upper bound of m if it's available. In addition, for the same burn-in lot, this Corollary

34

.

o

7
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alsc shows that the t* derived in this section is smaller than the t* derived in the

previous section,

To have a more clear idea about the amount of time which is required for burn-in,

we'll study the expected duration of burn-in for the various cases in §2.12 ~ §2.14

and in §2.15.
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e §2.9 The value of t* - given the prior distribution of m

¥

R
EE ) »

Let M be the number of the defective items in a randomly selected burn-in lot of

-
2
¢

v
LS
Ly

size n. Assume that M is distributed as P(M=mi8) , m=0,1,2,%es,n, where 8 can be a

P e

y

vector parameter. In the previous sections, we let t*(m,) be the t* obtained by

‘l .

e
“ 4

solving (2.3.3) or (2.7.4) or (2.3.5) when the value of M is m. In this section, we are

AAA
1.

a
[ 1

& b
L N

AT

trying to determine what an appropriate t* could be if the distribution of M,

P(M=ml0), is known.

N
o

e A XA
5
L)

4 ‘l ‘l "
li.’. L

The Bayes approach for us to solve this problem is to find a t* such that

P(R(t; D, M, n)=p)

w5

e = E\((P(R(t; D, M, n)>p) | 0)

s

o =% P(R(t; D, M, n)2p|M=m)*P(M=mi@)

m=1,n

=23 P(J2molM=m)P(M=mlO) + P(M<n+{(1-p )/(1-exp(-t))}18)
n+{(1-p)/(1-exp(-1))}< m=n

=2 {IT [1-exp(-iet¥)]}*P(M=miB) + P(M<n+{(1-p )/(1-exp(-1))}16)

n{{1-p)/(1-exp(-1))}< m=n  i=m-m0+1,m

2 0. (2.9.1)

The summation of m is started from ne{(1-p)/(1-exp(-1))}, since R(t; D, m, n) is

always greater than or equal to p if no burn-in is required, i.e.

r ety

.

m < ne(1-p)/(1-exp(-t)).

o
E‘EL_ As we replace (2.3.2) by (2.3.4) or (2.3.5) in calculating t*, we are throwing
:;:j.:: away some insignificant terms to simplify the computation and getting an upper

bound on the true t*, Using (2.3.4) and (2.3.5) in (2.9.1) we have
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P(R(t; D, M, n)zp)
=2 (IT (1-exp(-ist*)] J}sP(M=miB) + P(M<n{(1-p )/(1-exp(-t))}IB)

n{(1-p ¥(1-exp(-))}<msn  i=m-mO+1,m
> -0 (1 - [exp(-(m-m0+1)st*)-exp(-m+1)st¥)]/[1-exp(-t*)] }-P(M=m)
=1- [exp(-t*)/(1-exp(-t*))]*{ L m=0 nlexp(-(m-mo)*t*)-exp(-m)*t*)]*P(M=m) (2.9.2)
We approximate the right side of (2.9.2) by replacing the integer (m-mo) with the
non-integer
m-mo*
=m - [me(1-exp(-0))-n+(1-p)/(p-exp(-1)) = -m+(1-p)/(p-exp(-1)) + ne(1-p)/(p-exp(-1))
= -(cem + b), where ¢ = (1-p)/(p-exp(-t)) and b = -nec. (2.9.3)
Using (2.9.3) and letting MGF)s(x) be the moment generating function of M, we get
from (2.9.2)
P(R(t; D, M, n)zp)
2 1 - [exp(-t*)/(1-exp(-t*))] » {exp(b*t)*MGF)j(cet*) - MGF\(-t*)} (2.9.4)
2 1 - [exp((b-1)t*)/(1-exp(-t*))] * MGFpp(cet*) (2.9.5)

As mentioned in §2.3, setting expressions (2.9.1) or (2.9.4) or (2.9.5) equal to
a, we can solve for t* by a binary search. Using lemma 2.3.1, we know that they are
all monotonically increasing functions in t*. Let x=exp(-t*) and f(x)=the left-hand
side of (2.9.1) (or (2.9.4) or (2.9.5)), then the binary search described in Section 2.3
will give us the right t* up to any level of precision. However, the computation to get
t* is more complicated than the previous two cases when (2.9.1) is used. To avoid
this kind of much longer computation, let's consider some possible alternatives rather

than using (2.9.4) or (2.9.5).

.........
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We may screen out all the defectives when p is very close to 1 or M is close ton
as we did in §2.7, if we ignore the prior distribution of m. We might think about
using t* = X t*(m)P(M=ml0) = E(t*(M)) and using numerical computation to justify
how it works, but this doesn't clearly express the relation be:ween t* and P(R(t; D,
M, n)zp)za. Let's try to use the 100+B, where B=0.1/2, percentile of M, m8=
min{m: P(M<m)2B), as our true m and then apply (2.3.3) (or (2.3.4) or (2.3.5) ) to

calculate t*(mP,B). This seems to be a reasonable approach, since UM <mP )2 B>

«. In this case

i

e (R(t; D, M, n)2p)

N = PRR(t; D, M, n)2p| M < mB)eP( M < mP)+ P(R(; D, M, n)2p|M 2 mB)-P(M=mB)
AT

> BeP(M <mPB) + P(R(t; D, M, n)2p[M 2 mP)eP( M > mP)

> B2 + P(R(t; D, m, n)2p|M = mB)eP( M 2 mb) 2 B2 = ct. (2.9.6)
Here, P(R(t; D, m, n)2p) 2 o is guaranteed, and t*(mB,cx) is easier to calculate, so
we could use this t* as a substitute. (Note: P(R(t; D, m, n)=p|M 2 mB)P( M = mP)

< P( M 2 mP) < 1-Vo which should be small.)

Usually, we assume that M has a binomial or a Poisson distribution. If an
accurate t* is required to reduce the duration of burn-in, it would be better to solve
(2.9.1) directly by using the binary search algorithm as before. Otherwise, (2.9.4) or
(2.9.5) or (2.9.6) can be used to find the appropriate t*. The moment generating
function, MGFy, of a binomial distribution function, P(M=mlg), is MGFy(s) =
(peexp(s) + 1 - @) And, the moment generating, MGFp, of a poisson distribution
function, P(M=mlg), is MGFp(s) = exp(pe(exp(s) - 1). If M has a binomial
distribution, then the MGF is an increasing functions in s, so we can use the binary

search to find t* without any hesitation.
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Note: A numerical table used to compare the results in this section, when M is

binomial, will be given in Appendix I.
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§2.10 Probability of stopping this screening procadure before the j+15t
failure of a defective item is observed after the failure of the

j-th defective item.

The results in this and the following sections are independent of the equation
used to find t* in the previous sections, so the t* here can be any t* (or t*(m,a) ) in
the previous sections. Most of the results in this and the next section can be found in

Marcus and Blumenthal (1974). For the sake of completeness, their results are listed

here.

Define P(J = jlm,t*) as the probability of the number (random) of the failed
defectives up to the time of stopping equals or exceeds j when this sequential
screening scheme with t* is used, and the true number of defectives put on burn-in is
m. We have, as (2.3.2) or (2.3.3),forj=1, 2, ..., m,

P(J 2 jlm,t*)
=P(Wp<ty, Wy <t*, ., Wj<t*Im)

= ]I (1-exp(-ist*)) forj=1,2,..m (2.10.1)
i=m-j+1,m

and P(J 2 Olm,t*) = 1. In addition, forj =1, 2, ...,

P(J =j Im,t*)

=  P(JZjlmt*)-P(J 2z j+1im,t¥)

= I (l-exp(-ist*))- II  (1-exp(-iet*))
i=m-j+1,m i=m-j,m

= I (I-exp(-iet*)) (1 - (1-exp(-(m-j)=t*))
i=m-j+1,m

= exp( -(m—j)-t*)ﬂ_ (1-exp(-iet*)) (2.10.2)

1=m-j+1,m

and P(J = Olm,t*) = exp( -met* ).
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§2.11 The expected duration of burn-in.

Clearly, from (2.3.1), the expected ith waiting time between failure E(W{im) =

1/(m+1-1), where m is the number of defective items. Denote the expected ith waiting

time between failures given that it does not cxzeed t* by E( W; | W € t*,m) as in

‘,l’.
w1
v g

Marcus and Blumenthal(1974). We have
E(W;IW; <t*m)

e

F
P I |

=I {(m+1-i)*s }eexp(-(m+1-1)*s)/(1-exp(-(m+1-i)st*))ds

O<sct*

“ 5"
D]
': yey h

=z "1/(1-exp( -(m+1-1)ot* ))}o [-t*sexp(-(m+1-1)t*) +J exp( -(m+1-i)s )ds

O<s<1*

P
Al

o iR

i

= {1/(1-exp(-(m+1-i)et*)) }» {-t*sexp(-(m+1-i)*t*) + [1- exp( -(m+1-i)st* }]/(m+1-i)

- l',"
I

= (1/(m+1-1} - { t*eexp( -(m+1-i)et* )/(1-exp(-(m+1-i)+t*))
= E(Wj) - t¥/[exp((m+1-i)et*)-1]. 2.11.1)
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Let's denote the random duration of burn-in as D. For a given m and t*, we

1
.

have, as in Marcus and Blumenthal (1974),
E( DI m,t*)

h,‘
Ol

r

=t*+Y P(J=j)ZE(WjlW<tym), (2.11.2)
j=0.m i=0,j

o

T
‘H':"l.

-

where we let E(Wg) = E( W | Wy <t*m) =0.
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When the assumed m is more than its true value, the t* based on this value is

LM S

larger than what it should be. In this case, E(DIm,t*) is longer than what it should be,

@

Laan 2
e

or we will have a longer expected duration.
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If the number of defectives, M, has prior distribution P(M=m!6), then
E(Di*)

e y M
0 )
o

)
by ‘l

=23 P(M=ml0)+E(D!m,t*)

m=0,n

=t*+3 P(M=mi8) £ PU=pm) + T E(W;IW; < t*,m) (2.11.3)
m=0.n j=0.m i=0,)

l' J
" -Z‘f,'z, i)
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Equation (2.11.2) or (2.11.3) tells us that a minimum amount of burr-in time,

t*, is required, if this stopping rule is used. In addition, this is obvious from

(W

Stopping Rule (S.2.1).
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§2.12 E(D|m,t*) is an increasing function in t* when m (n, pand )

is fixed.

The main theorem of this section shows that E(DIm,t*) is a strictly increasing
function in t* for fixed m and fixed n (the size of burn-in lot). This theorem can be
used to compare the difference between two expected durations, for a given burn-in
lot, if two different estirnates of m are used in obtairing t*. Define
gmt*) = E(DIm,t*) = t* + 3o, P(J =] )o X0 E( Wi I Wi <t*m), (2.12.1)
we have the following theorem.

Theorem 2.12.1

Given fixed m and n, for t* in (0,%0), g(m,t*) is a strictly increasing function in t¥.
Proof:

g(m,U*)=t* + EJ‘:o.mP( I=]j Im,t*)-Zi=0JE( Wi | Wj < t*,m)
=t*+EJ-=1mexp(-(m-j)¢z*)l"[i=m_j+1_m(l-exp(-i-t*))°2i.__1J-{ 1/(m+1-)-t*/[exp((m+1-
1)st*) -1]}, since Wq=0.

The following lemmas and corollaries show that, for fixed m,

1) Forj=0,1,s+=,m, P(J =j Im,t*) skews to the right, as t* is increased. This fact is

getting more signiricant as j approaches m.

2) Fori=0,1,es,m, E( W | W; < t*,m) is a strictly increasing function in t*.

3) For j=0,1,.se,m, Zi0,;E( Wi Wj < t*,m) is a strictly increasing function in t*,
too.

4)  For j=0,1,0se,m, Ts0mP(J = j Im,1*)+Tico E( Wi | Wj < t*,m) is increased as t*
increases.

So, we conclude that g(m,t*) is a strictly increasing function in t*.
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Lemma 2.12.1

Given a fixed m, for £>0, u>0 and j is a nonegative integer less than or equal to m,
define f(t,u.j,m)=P(J=jit,m)/P(J=jlu,m).

If t>u, then f(t,uj,m) is a strictly increasing function in j. Thus, P(J = j It*,m) skews
to the large j as t* is increased.

Proof:

For j=0,1,....m-1,

f(t,u,j,m)

=lexp(-(m-j) )i ju1 m(1-exp-ie0) }/{exp(-(m-])ow) [T 11 m(1-exp(-iv))}.

= exp(-(m-])*(t-u))* ITiom s 1 m { (1-eXp(-ie0))/(1-exp(-i*w)) }.

£+ 1,m)=exp(-(m-j- 1)*(t-w))*Ticm.j m{ (1-eXp(-i*0))/(1-exp(-isu)) )

= exp(t-u)e {(1-Cxp(-(m-j)°t)/(1-exp(-(m-j)°u)}'H,-=m.j+1,m ((1-exp(-i*t))/(1-exp(-isu))}
= exp(t-u)* { (1-exp(-(m-j)+t)/(1-exp(-(m-j)eu) }of(t,u,j,m).

f(t,uj+1,m) > f(t,u,j,m)

<=> exp(t-u)* {(1-exp(-(m-j)st)/(1-exp(-(m-j)eu)} > 1

<=> exp(t)*(1-exp(-(m-j)*t) > exp(u)+(1-exp(-(m-j)*u)

<=> t>u.

The proof of Lemma 2.12.1 is completed.

Lemma 2.12.2

Givena fixed m, for i=0,1,...,m, E(Wj | W; < t*m) is a strictly increasing function
in t*,

Froof:

ECW{IW; <t*m) = 1m+1-0) - t*/(exp((m+1-1)et*)-1).

Define h(t) = t/(exp(ast)-1).
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v The fnllowing proposition shows that h(t), h(t)=t/{exp(ast)-1), is a strictly decreasing
oy funcidon in t. Let t*=t and m+1-i=a in h(t), Lemma 2.12.2 is proved.
"I
o
o
b Proposition:
k, 4 For tin (0,%) and any a>0, h(t) = t/(exp(a*t)-1) is a strictly decreasing function in t.
.
. . .
:'j, Proof:
) For t in (0,),
n'(1) = {(exp(ast)-1)-trasexp(ast)}/(exp(ast)-1)2.
o h'(t) < 0, is true,
: <=> {(exp(ast)-1)-teasexp(ast) }/(exp(ast)-1)2 <0
‘ <=> exp(ast)-1-teasexp(ast) <0
Tjil' <=> |-exp(-ast)-ast < 0.
Define h1(t) = 1-exp(-a*t)-a-t. We have h(0)=0 and h1(0)=0.
e If we can prove that h1(t) is a strictly decreasing function in t for t in (0,e=), we have
”
e

.

h1(t)<0 since h1(0)=0. For t in (0,%), h1(t)<0, implies that h'(t)<0. So, for t in

[Ny

v
s

(0,%=), h(t) is a strictly decreasing function int.

i

h1'(t) = asexp(-ast)-a=as(exp(-1)-1) < 0if t > 0.

K- Hence, h1(1) is a strictly decreasing function in t fort > 0.

....) Corollary 2.12.1

e For t* in (0,%0), X E( Wi | Wj < t*,m) is a strictly increasing function in t*.
Proof:

_.’L_ A linear combination of strictly increasing functions with positive coefficient is strictly
- increasing.
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To prove that X, P(J = j Im,t*)+Zi 0 EC Wi | Wi < t*,m) is a strictly
-'.'-' increasing function in t*, we need to prove the following lemma.
v Lemma 2.12.3
, :: For i=0,1,...,m, assume a(i), b(i), c(i) ahd d(i) are nonegative real numbers with
.‘ ) Tomal)=l,
) Tombli)=1,
- 3) b(i)/a(i) is increased as i is increased,
X 4) (i) and d(i) are monotonically increasing in i,
‘:3 5) Foreachi, d@) > c().
“'::' Under the above condition, T;_g ma(i)ec(i) < T;_g b(i)d(i).
... Proof:
Let ij=maxi_q;, __n{i: a()2b(@)} and iy=min,_o, . (i:a()<b()}. (*)
, Itis clear that i, €iy;. Moreover, i =iy or i + 1=y
¢ __ Let dy =d(ip), dy =d(iy) and d=( d; +d; )/2.
Using 4), we have d(0)<d(1)<s+s< d, < d € dy< d(iy,;)<r++<d(m). (%)
: :_; Finally, we have
Ticomta()>c()-b(i)ed(i)
< %o m{a)+d()-b(i)+d(@))
o < Brcondr (a)-b())
.. < Zioomd{a)-b®), by using (*) and (**),
= 0.
'~_, S0, Xio.ma(i)ec(i) < X;_g ,b(i)+d(i). The proof of this lemma is now complete.
-" Corollary 2.12.2
‘__ For fixed m and n, ZicomP(J =] ) Zicg E( Wi W < t*m) is a strictly increasing
- function in t*,
"-\.;
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Proof:
.-' For 12*>t1* and j=0,1,2,e*+,m, define
o aj) = PU=jim,t1#),
(e b(j) = PU=jim,i2%),
: c(j) = Zizy j EOWjIWj<tl*,m).
d() = Timy E(W{IWj<t2%,m).
It is trivial that ;. a() = Zjo.m bG) = 1.
. From Corollary 2.12.1, we have d(j) > c(j) for j=0,1,¢¢,m and both of them are
::-:: strictly increasing function in j.
- In addition, Lemma 2.12.1 shows that b(j)/a(j) is increased as j is increased.
Hence, all the conditions of the above lemma are satisfied, the proof of this corollary
is completed.
Using the above lemmas and corollaries, we have proved Theorem 2.12.1.
In a given burn-in lot, with fixed n, p and ¢, this theorem shows that the
< expected duration of bumn-in is longer if the used t* is larger. In addition, for fixed n,
p and o, we know, in §2.3, that t*(m,n), is a monotonically increasing function in
m, so the expected duration is longer if the used estimated m is larger. The following
| .\( corollary summarizes this result.
N
.‘“’ Corollary 2.12.3:
For a given burn-in lot with unknown number of defectives, m, if ml < m2 be two
'_ estimates of m, in addidon to having

(1) t*(ml,0) < t*(m2,00), we have
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(2) E(DIm,t*(m1,a)) < E(Dim,t*(m2,a))

where t*(m,o) can be the solution of equation (2.3.3) or (2.3.4) or (2.3.5).

Yy
i

1
]

000

X 4, .

If m is overestimated, we have a conservative rule: P(R(t; D,m, n)2p) is larger

than what is truly required and longer expected duration of burn-in. If m is

A underestimaied we might not be able to achieve our desired reliability goal.

q

.

i Suppose that m has prior distribution P(M=mlg), for m=0,1,%¢s,n. In (2.11.3),

Y
“

'.’f-'_a

“a te

we have E(DIt¥)= ¥, P(M=mlg)+ E(DIm,t*(c)) where t*(a) is the solution of

L]

4O

s

equation (2.9.1) or (2.9.4) or (2.9.5). Using the above results, we have the

following corollary.
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Corollary 2.12.4:

If12* > t1*, then E(Dit1*) < E(DIt2*).
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§2.13 The expected duration of burn-in for different lot size, n, when

the ratio m/n is a (fixed) constant.

This case, m/n is a constant, say r, is a very important case in studying this
screening procedure, since we usually assurae that the ratio of the number of
defectives to the burn-in lot size, from a production line is a constant, The expected

duration gives us the idea about how long this burn-in will take if this screening

procedure is used. Some special (m,n) pairs may give us shorter expected duration of

burn-in just as happened in Theorem 2.6.1. For economic purposes (or any other

r T
5 8 L
AP

purposes,, we need to know what these (m,n) pairs are.

%

®

e

[ In this case, as t*(m,a), C(DIm,q) is not a monotonic function in m. This can be
s seen rrom the numerical computation. However, E(DIm,a) does preserve the similar

W

= property as t¥(m,o) has, that is the following conjecture.

-:\

i Conjecture 2.13.1:

..

Let my be the smallest positive integer with myo=1. For i=1,2,ee¢, if m;,, is the

l\‘
> ) e ) e : 3
ﬂ'i\‘_ smallest positive integer more than the positive integer m; with m;,;-m;,,0 = m;-
AN m;0+1, then
iy
L.
!f E(Dlm;,a)<E(Dim+1,0)<eee<E(DIm; ;- 1,00) and E(DImy,,0) < E(DIm;,00),
- (2.13.1)
.:-‘f when (2.3.3.) or (2.3.4) or (2.3.5) is used. And, let n, be the smallest positive
K o
. 0. integer more than or equal my/r.
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This Conjecture tells us to find the sequence {m;}, i=1,2,0+, as defined before.
In addition, we use n;, which is the smallest integer more than or equal m/r, as the
corresponding size of burn-in lot. Then, for this sequence of number pairs (m;,n;),

we are expecting to have
E(Dirj41,0) < E(Dimy,ct) fori= 1,2, eee. (2.13.2)
And, {n,}, i=1,2,e, are our corresponding burn-in lot sizes. In order to achieve the

best (economic) result through burn-in, we choose the appropriate nj from this

sequence,

MNote: The above discussion is for the case that the burn-in lot size is to be
determined. If the burn-ir lot size is fixed in advance, then the average of the expected

burn-in times, E(DIm,a)/n, would be a good criterion.
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§2.14 The difference between the results of Marcus and Blumenthal

(1974) and the results of this procedure

Marcus and Blumenthal (1974) considered the case that no information about m
is availuble and solved our problem in different set up. Eventually, they try to find a
t*, as we did here, to ensure thar the number of defectives left after burn-in is
bounded with at least some desired level of probability. They were very successful in
finding the appropriate t* and ruled out the effect of m. The information about m was
assurmed unavailable in their paper and they didn't consider the other cases as we
discussed here. Mainly, they solved t* by using equation (2.3.5) and had the solved

t* not depend on m and n with the cost of a longer duration of burn-in.

Here, we suggest to use equation (2.3.3) and to use the available information
about m to solve the desired t*. The duration of burn-in is shorter but it depends on
the information about m. When no information about m is available, we can use n-1
as the upper bound of ‘i’ in (2.3.3) and ¢ (defined in §2.2) as the corresponding

lower bound. In this case, we'll still have the solved t* less than the t* in their paper.

Two numerical algorithms are suggested here for the calculation of t*. The binary
search algorithm is good for all equations (2.3.3), (2.3.4), (2.3.5) and its extensions.
The fixed point iterative algorithm is used for solving equation (2.3.5) which was

used to construct the tables in their paper. These two algorithms are easy to write into

.
.

v
-
.

a computer code and they are proved to be convergent.
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Since the information about m was assumed unknown in their paper, they didn't

g &
"

e

have any discussion based on this. Here, we have put a lot of effort in investigating

1

fpty &

the
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K
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propertics of t*(m, o) and E(DIm,t*) based on the available information about m and

intend 1o find a best burn-in lot size to fulfiil our goal under the possible constraints,

Na s
A:' ‘-‘ ‘v

like cost and time limitations, imposed on burn-in.
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CHAPTER 111
PROCEDURE II - SMALL SAMPLE THEORY
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§3.1 Idea of Procedure II
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The maximum likelihood estimator of m (Johnson 1962) is mm(D) = Jp/F(D,

Ed
h
l'r -.l

where F is the cumulative distribution of the lifetimes of the defectives. The maxinium

e

" S

likelihood estimator of m is used to estimate R(t;D,m,n) and the maximum likelihood

s

estimator R(t;D,m™(D),n) is obtained. Consider the stopping rule defined by
stopping as soon as R(t;D,m™ml n) > k(p,a,m,n). We attempt to find k such that P(
R(t; D, m, n) 2 p) 2 & can be achieved. Here k=k(p,a,m,n) is a function of m . This
is not what we'd like to see because the value of m is not given exactly, but, we'll try

to determine an appropriate k = k(p,o,m,n) such that it is not very sensitive to m. We

also hope that a more appropriate k can be derived if more information about m is

available. Another interesting aspect of this screening procedure, as with the previous

two procedures, is the procedure's expected duration. We'll see that this is a function

i

of k. The expected duration of burn-in is also a function of m, since k is a function of

P
1. LA
.:{;{l

m.

'4",:'( .
PR
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The small sample theory for all of these will be studied in this chapter. The

N

corresponding large sample theory will be studied in the next chapter. The following is

-
e 4 L

a brief summary of this chapter. The definition of the stopping rule developed in this
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chapter is given in Section 3.2. In addition, a generalization of this stopping rule is

f )
e

7,

«

=~
'v"

also given in this section. The probability that this rule stops aiter exactly j defective

-

ll. l“

items have been removed from the burn-in lot is obtained in Section 3.3. In addition,

o
oy
o

the probability for the generalized stopping rule is derived in §3.4. How k is obtained,
based on small sample theory, is discussed in §3.5, §3.6 and §3.7. In most of the last
part of this chapter, the performance of this stopping rule based on the expected

duration criterion is discussed. The number of the defective items left after this burn-in

procedure is given in Section 3,11.
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- §3.2 The Stopping Rule

-

o

Let D = the duration of burn-in and Jp = the number of failed defective items

observed up until time D

R(t: D, m, n) =1 - ((m- Jp)/(n - Jp))+(1 - exp(-1)). 3.2.1)

If mis replaced by its maximum likelihood estimator, m™ = Jp/(1 - exp(-D)), then we
have an estimator of R(t; D, m, n),

R(; D, m™, n)

= 1- ((m™ - Jp)/(n - Ip))e(l - exp(-1))

.
u
lr'

Ty i o e I
ORIV S

s
1]

= 1- (((Ip/(1 - exp(-D)) - Ip)/(n - Ip))*(1 - exp(-t))
= 1- ((Jp/(n - Ip))+(exp(-D)/(1 - exp(-D))+(1 - exp(-1))
= 1- ((Jp/(n - Ip))e(1/(exp(D) - 1))e(1 - exp(-t)). (3.2.2)

Ly
A

TR
b D TR R

e E
Lak

The idea of the stopping rule to be studied is:

Stop as soon as R(t;D,mmn) 2 k = k(p,x,m,n).

The value of k will have to be determined, and since R(t; 0, m™!, n) = 1, a minimum
burn-in period will be required to ensure P(R(t; D, m, n) 2 p ) = . The rule will be

presented formally below in a manner which facilitates the study of its properties.

Based on (3.2.2), we reformulate the stopping rule in terms of a sequence of
possible stopping times {S;=s(n,j.k), j=0, 1, 2, ... ,n} as follows. For a given k, 0 <
k<1,

R(; D, m™, n) 2 k

<=> |- (Jp/(n - Ip))=(1/(exp(D)-1)(1 - exp(-t)) 2 k (3.2.3)
<=> 1-k2Jp/(n-Ip)e{1/(exp(D)-1}(1 - exp(-1))

<=> exp(D) -12 (Jp/(n - Jp){(1 - exp(-))/(1 - k)}

- S - - T Y T S N N R e S S i O A T T S A
L N T S N T T R e R A \,_.\ ™
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<=> Dz In{[Jp/(n - IDIIC1 - exp(-0)/(1 - k)] + 1) (3.2.4)
Let S;=s{n, j, k) =In[G/(n - )))+((1 - exp(-H))/(1 - k)) +1] forj=0, 1,2, ..., n-1;
S, =s(n, n, k) =co, (3.2.5
Note:

S¢ = 0 and Inequality (3.2.4) is always true at D=0.

] ’I .]
.lr."n

|
Deilhl o
r . l.l

_'l N

The sequence of possible stopping times, {S;, j=0, 1, 2, ... ,n}, is a sequence of

'-
i )
Y

fixed values. Here, D, the time to failure of the defective item is random and

unknown, and the index J of Sy at which the rule stops is random.

Inequality (3.2.4) gives us a way to re-express the stopping rule: given that j
failures have been observed, if the failure time of the (j+1)st defective item exceeds the

right hand side of (3.2.4) (i.e., after observing j failures, no additional failure has been

observed by time Sj), then stop burn-in; otherwise continue burn-in, Formally, we
have the stopping rule:

Stop burn-in at Sy ; when the first j is reached with T; > S for j = 2,
3 ., n (S.3.0)

In this rule, k = k(p,m,n) needs to be chosen such that P(R(t; D, m, n) 2 p) 2 o is
guaranteed. Note: the value of j starts from two. If j starts from one, T; > Sy =01s

always true, i.e., this rule always stops at time 0.

Discussion:

1. The function s(n,j,k) is a monotonic increasing function in j. This means that the
more failures are observed, the longer the burn-in must be run. It also means that
you don't stop when a failure occurs, but you stop when a gap between failures

becomes large.
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N 2. The function s(n, j, k) is a monotonic increasing function in k. This tells us that to
!:}.j get a higher (estimated) reliability a longer burn-in duration is required.
;"" 3. The function s(n, 0, k) = 0. This would tell us to stop immediately if there is no
oo \ . , o
ol failure at time zero, and we ignore this requirement.
oo 4. The function s(n, 1, k) > 0. We use this as the minimum duration of burn-in.
NS
LSS
E 5. The function s(n, n, k)=e=, and s(n, j, k) <e for j=0, 1, ..., n-1. If all the items

under bun-in are defectives, then burn-in cannot achieve the reliability goal. If m

253
. l.! L4

< n-1, then burn-in will be terminated at one of s(n, j, k), j=1, 2, ..., m.

Note:

BT
£
e '

S @
¥ L ]
[ e O e Ty e,

1. In this stopping rule, we require that the index of j be at least one. If we did not,

el

since the MLE of R(t,D,m,n) is unity up to the time of the first failure, the burn-in

LN

would be stopped immediately unless there was a failure at start-up.

2. If Ty > Sy, then stop burning-in. In this case, we have Ty > T} > §1.

3. Tlie upper bound of mis n-1, so n is used as the upper bound of j.

4. 1f Sj.y is replaced by S; in (S.3.0), a more conservative rule is obtained. The
reason is that Sj >S5 i-1 and the probability of Tj not exceeding Sj is higher than the
probability that T; does not exceed §j-1-

As a consequence of the fourth note above, we can replace Sj-l by Sj in this

stopping rule. The advantage of doing this is: a more conservative rule is obtained and
the requirement that at least one failure must be observed, imposed by using the MLE,
is removed. So, our new stopping rule is

Stop burn-in at §; when the first j is reached with T, > 5§

for j =1,2, ..,n (S.3.1
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5.
3

The probability integral transformation converts an exponentially distributed
random variable T over (0,) into a uniformly distributed random variable U over
(0,1). This transformation will enable us to analyze this stopping rule (S8.3.1) through
a sequence of ordered random observations U;=1-exp(-T;), Uy=1-exp(-T,), **,
Uj=l—exp(~Tj), e+« from uniform(0,1), where T;'s are the ordered (random) lifetimes

of the failed defectives under burn-in.

Let's define

E C, = cnik
:j‘ = l-exp(-s(n, iR k»N=1-1/{ 1+[(1-exp(—t))/(l-k)]'(i/(n-j)}
3 = (e (-exp(OYI(1-K)(n-j)+je(1-exp(-D)], (3.2.4)

where ¢(n, j, k) is a monotonic transformation of s(n, j, k). Based on this we have our

transformed stopping rule :

Stop burn-in at c¢(n, j, k) when the first j is reached with UJ > ¢(n, j,

;'v-ﬁﬂ“‘r‘?“’r.’) x
o e e e e PR
LI T N L L
LA PR . . PRI

k), for j=1, 2, +, n. (5.3.2)

R
!'\ t

Here, j starts from 1 rather than 2.

R

We should be very cautious when stopping rule (§8.3.1) or (8.3.2) is in use. One

Y Y W,
1
NI N

|
! ne
T P A A

very essential requirement for this stopping rule is that j must be atleast 1. Thig is due

to the application of the MLE of m. More precisely, let's look at (3.2.3). We can see

N
Ve,

- that (3.2.3) is always true if J5=0 or if there is no need of burt-in for this production
lot at the very beginning of our screening procedure. However, we believe that the
desired reliability goal cannot be achieved or the proportion of defectives in this
production is higher than acceptable without burning-in. In order to clarify this

problem, we need that either a minimum duration of burn-in is required or at least one

e T N e A A A e Tl N e A
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failed defective should be observed before burn-in is stopped if we decided to use

burn-in for a given production lot. Moreover, we noted before, that if §; is increased
as j is increased, a much more conservative rule can be obtained if $; is replaced by
Sj+i for any positive integer i. The choice of i is based on our reliability consideration.
To consolidate all the points discussed here, we have the

Modified General Stopping Rule.

For an appropriate choice of a positive integer i, stop burning-in at S,,;
if Ty > Sy.ps-

For j=2,3,... , stop burning-in at S;,;.1 when the first i is reached with
Ty > Sj-1. (8.3.3)

or

if Ty > S;,;, then stop at S ;.

For j=2,3, ... , stop burning-in at SJ+I when the first j is reached with

Here, (5.3.3) corresponds to (S.3.0) and (S.3.4) corresponds to (5.3.1). These
two rules clearly indicate that this screening procedure will not be stopped until some

minimum number of failures, i+1, have been observed.

First of all, we'll consider this procedure by assuming that m is known. Later on,
we'll briefly discuss how k depends on the available information about m. Since k is
the only unspecified crucial parameter of this stopping rule, if we know k, then we

kr.ow this stopping rule.
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3 P(J=jjm,k) of the Original Stopping Rule (58.3.0) or (5.3.2)

Stopping rule (S.3.2) says: Stop burn-in at the first j with T; > S; where T; is the
life time of the jth failed defective item, and stop burn-in at Sj , for j=1, 2, eee, 41,
(To get Stopping Rule (S.3.0), replace S by Sj_1 for j=2,-+=,n.) So the probat-ility
that this burn-in procedure stops at time S; is P(J=j-1im,k). This probability can be

calculated when m is known and k is given; i.e.,

vl

Vd
AR

P( stop burn-in at §;,; Im,k)

.

= P( j failed defective items observed during burn-in when burn-in is stopped I mk )

I 'll' r’- '-- 1

;1

= P(J=jim,k) for j=0,1,2,...,m. (3.3.1)

2@

),
t’"t’(-

f
[

Let's evaluate (3.3.1). For j=0,

a, a4, A £,

YY)
0

P(J=0Im.,k)

.

v
 aa
L

= P( burn-in is stopped before the occurrence of any failure | m,k)

e
Wt

=P(T, > S, I mk)

Q}_'.’_ 7’

= (1-C; )ym (3.3.2)

DA

Dt

>
oAl .

For j=1,2

o .. LA .

P(J=jim,k)

e
L)
", ’-

£y

= P( j failed defective items have been observed when burn-in is stopped | mk )

- o e
"‘..,‘
P

a® Tl

= P( burn-in is stopped at §;,, I m,k)
= P( Tl S S], Tz S S:, reey TJ S SJ. TJT] > S_]fl I m,k )
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5 = (m{(m-j-1)1}ef . S ] (1-ujy)mi1duj, duy; .. du,
l ' 0<uj<Cy ujy<uj<Cj Cj,q<uj, <l
-’-" = {m!/(1{{m-j)!)}e (l-Cj,Ll)’“'J'fl ,[ duj...duzdul (3.3.3)
e Ocuj<Cy  uj<uy< C2 “j-1<“j<cj
S
- To evaluate the integral in (3.3.3), define
- o
‘ By= 1. (3.3.4)
"
L B;=/ du, = C,= CpB, (3.3.5)
i O<uy<C;
L) "l
En i
. 3, = J I du,du,
N 0cuy<Cy  uj<up< Cy
b
¥ - | crupay
_:-:. 0<u1<C1
= Cz‘J du, I uyduy
.‘-' 0<U1<Cl O(UI<C1
o = Cp*B, - (1/2)+(C))2 (3.2.6)
" —-
{
:.: B3 = J. ‘[ ,[ dU3duZdU1
:::: O<u1<Cy uj<uz< Cp us<u3<Cy
) = | | (C3-uy) du,duy,
. '_’:\. 0<uy<Cy ujp<ug< Cy
:::: = C3’B2 - UZ duzdul
. O<uj<C: up<ug< Cy
ol = Cy*B,- (1/2)° [(Cy)? - (up ) ]dy
! 0<Ul<C1
L = C3¢B, -(1/2)+( C3 )2B; + (1/2)+(1/3)+(C,) 3
i = T (D)FIe(1/ie(Cyipy)ie By (3.3.7)
45 i=1,3
ot :
.
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By mathematical induction, it can be shown that

BJ— = I _" I duj . dupduy

O0<uj<Cy uj<up< C2 UJ_1<uj<Cj

= 3y (-1D)Te(1/it)s( CJ 1) B for j=1,2,....m. (3.3.8)
i=1,j

From (3.3.3) and (3.3.8), we have

PU=jimk) = (m!/(m-j))+(1-Cj,y )ieB;  for j=0,1,2,...m, (3.3.9)

Summarizing the above results, we have:

Theorem 3.3.1
P(J=jim,k)= (m!/(m-j)!)-(l—Cj+1 )m'J'BJ- for j=0,1,2,...,m. (3.3.10)

where j denote the total number of failed defective items observed when bum-in is

stopped at time S;,; ( Note: Cj =1 - exp(-5;) ).
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§3.4  P(J=jjm,k) of the Modified General Rules (5.3.3) ( or (S.3.4) )

As 1n the previous sections, we define P(J=jim,k) as the probability that there are j
failed defectives ohserved when this screening procedure is stopped. This is the
probability, for an appropriate 1, that Ty £ §,,, (or T; £8§,,;), T, £ 5,5 4,or T, <
Savidy o Tj€ Siyy (or Ty §) and Ty > S5 (or Ty > 85495 or Uy £ Gy
(or Uy € Cp ;) Uy £ Cyqyilor Uy S Coi) oo Uy s Gy (or Uy < Gyp) and
Uj1>Cip4 (0r Ujyy > Cjyy ) given m and k. Starting from here, the following
derivation will be based on stopping rule (& 3.3) (For stopping rule (S.3.4),
P(J=jlm,k) can be derived in the same way by replacing the corresponding CJ- (or Sj) in
the following derivations). The derivation of P(J=j! m,k ) for these two generalized
stopping rules is similar to the derivation of P(J=jl m,k ) in the previous section,
except some differences in the integration part of this probability, For the sake of

completeness, it is given here. The next part of this section is the derivation of

P(J=jimk) for j=0,1,2,ecs,m.

For j=0,
P(J=0l m,k)

= P( burn-in stopped before the occurrence of any failure | m,k)

= P(U, > Cy,; I mk). (3.4.1)

o For j=1, 2, ..., m,

Ll P(J=jlm,k)

RS

7’

= P(j failed defective items observed when burmn-in is stopped | m,k )
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:’:‘-::' = P(burn-in is stopped at time £, ;I m,k)
o =P(T; €815 Ta £ S5.045 0 Ty €8540, Tjor > Sjy I mk )

.\,_‘\2; = P( U< Cpyj Us€ Copyip v U S € Ujyy > Ciggpag | mik) (3.4.2)

::,‘:f Let's evaluate (3.4.1) and (3.4.2). It is clear that
b PU=0lmk) = P(U; > Cy,;) = (1-Cp, )™ (3.4.3)
P(J=l|m,k) = P(Ul < C1+i! U> C2-1+i lm,k) = m'C1+i'(1’C2_1+i )(mnl). (344)

To evaluate P(J=jim,k) for j=2,3, ..., m, let's define:

AJ = J U, J J dllJ ...dl.l3dl]2, (345)
n, <C . u.<u, <C . u.,<u.<C, , .
Oty <Cyai U29M3 <03 14 1) )1+
with Al = C2—1+i and AO = 1.
We have:
Ay = J uyduy = (1/2)2Cp 42 (3.4.6)
Ocuy <Cy 1y
Ay = j up j du;du,
0m<Cotni U253 G504
= C3-1+i'~[ uy du; - J. uz2 duy
U uy<ly ki O<uy <Cy 14
= Cyp4itAy - (1/3)Cyy,;3 (3.4.7)

For j=4.5, ...,m, by induction, We have

|
A_I = J- u, j ase J duj—l ...dU3dU2
00 Cotai 2% 1m0 Y G

= Gjo14i*Aj-1 - (V2D {(Cjo14i-D? Aj-2 - (I13)+{(Cj141:2)3A 5.3 - (1/4)s

{ses - (1/h)* {(Cpny-h-14i+ 1) Am-i- /(h+1ys {oee - 1/(-1+i-2) ((C3_14i¥2

'Az- (1/_])0(C2_1+1)J]-o¢ }oo-] YY) }} (348)
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Y Finally, we have:
:*_: . PJ=2Imk) = {m!/(l!(m-2)!)}-(1-C3_1+i)m'2-A2 (3.4.9)
e P(J=3Imk) = (m!/(1!(m-3)1))+(1-Cq.14)™3*A3 (3.4.10)
..":J'_
% For j=4, 5, ... m
E;{:.;: P(J=jlm,k)
e
[ =P(U 1S Cpipy Upy4i€ Gy o Uy £ Gy Ujyy > iy I mk)
b

F - (Dm0 w .| J (1-uj 4 )m-i!

0<up<C2-y,;  u2<ua<Cayy ¢j1<Uj<Clyi Cj1-14i<ujer<l

[y

du; ...duzdu;
= {m!/(11+(m-)D}(1-Cjyp.14)m A, (3.4.11)

Note:

P(J=mlmk)

=P(U € Cpyyy UpL Cypygy oo Uy £ Cipgiy Uy 1> Crygogs Mk )
=P(UIS Co4in Upf Coyugy vos Uy SCpgyi I Mk

=(m!)*A,

Hence we have the following theorem.

Theorem 3.4.1 ( under the Modified Stopping Rule )
P(J=0lm,k) = ( 1- ‘Cj+1)m.

PU=jlmk) = {m!/(m-j)!}s( 1- "Cp,)mIeAy, for j=1,2,...m (3.4.12)
where, for using stopping rule (5.3.3)
"C CJ 14 forj=2,3,..m and

*Cyo="Cy=Cpy;r

............
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7,

for using stopping rule (§.3.4)
*Cj=Cy,; for j=0,1,2,3,..m

i
[ ]
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Equations (3.3.10) of Theorem 2.3.1 and (3.4.12) of Theorem 3.4.1 have

t,:jj_: identical expresions. If the C's and B's in equation (3.3.10) are replaced by the *C's
ia\ and A's, then we have equation (3.4.12). Hereafter, we'll use

N P(J=jimk) = (m!/(m-j))(1-Cj,, ym-j B; for j=0,1.2,...,m (3.4.13)
P to denote these probabilities. It is trivial that the result which is derived based on
E\ (3.4.13) should be good for both (3.3.10) and (3.4.12). This means that the
E,‘ probability for stopping rules (5.3.1), (§.3.2), (5.3.3), (8.3.4) have similar

expressions, except for minor changes in the definition of Cj+1 and Bj.
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$§3.5 The determination of k when m is given.

For a given m, we have defined mo* = (m+(1-exp(-t))-n+(1-p))/(p-exp(-t)) and mo
= the smallest integer more than or equal to mo*, and know that R(t; D, m, n) 2 p if
and only if j 2 mo. In this screening procedure, k is cinosen such that
P(R(t; D, m, n) = p | stopping rule) 2 a.

In §3.8, we'll discuss the determination of k based on the available information about

m. Let's denote this in the following inequality.

> P(J=jlmk) 2 «a 3.5.1)
j= mg m

or

S @UmpY(1-Cip™iBj 2 a. (3.5.2)
= molm

Any k that satisfies (3.5.2) will give us P( R(t; D, m , n) 2p ) 2 & when this
sequential stopping rule is used. The pessible stopping time of this screening
procedure will be prolonged if k is increased, since Cj = je(l-exp(-t))/[(n-j)*(1-
k)+je(1-exp(-1))] i an increasing function of k. In order to reduce the duration of burn-
in, we'd like to find the smallest k with P(R(t; D, m, n) 2 p) 2 . This k can be

obtained by solving

T (mUm)e(1-Cjs)™iB] = o (3.5.3)

j= mD' m
Note: We can denote the solution of (3.5.3) as k(m,a,p,n,t), since Cj is a function of

r,n and l-exp(-t).

Moreover, from the definition of Bj ( equation (3.3.4) to (3.3.8) or equation

(3.4.5) to (3.4.8) ), we know that the upper bounds of the integrals defining Bj's are
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increased as k increases. So, the left hand side of equation (3.5.3) is increased as k

increases. Hence, there is at most one k which can be the solution of equation (3.5.3).

Eventually, for any a in [0,1] and any kg in [0,1] with

)Y PU=jlmk=ky) <€ a < 3 PU=sjimk=1)=1, (3.5.4)

j= m0 m j=m0 m
there is one and only one k in (kg.1]such that

> P(J=jmk) = o. (3.5.5)

J=m0 m

So we have the following theorem.
Theorem 3.5.1
If (3.5.4) holds for a given kg in (0,1), then, under any version of this stopping rule,
the equation
2z  PU=jmk) = « (3.5.6)
j= m0, m

has exactly one k as its solution in [kg,1]. In addition, if

Y  PUsjimk=0) > « (3.5.7)
j=m0.m

then

Y PUJsmk) > o (3.5.8)
j= mO‘ m

for any k in [0,1].

Note: If (3.5.7) is true, then no burn-in is necessary.
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EL" N
l > Finally, we have the following corollary.
o Corollary 3.5.1:
: For any « in [0,1], there is a (unique) smallest k in[0,1] such that equation (3.5.8)

. holds for my=1, or 2, ..., or m.

Note: From §3.3 and §3.5, we know that the expression for P(J = mo) is quite
complicated. To compute k from the results of these two sections are not easy whenm

R is moderately large. In the next chapter, possible k's will be derived through large
L)

N sample theory.
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§3.6 Numerical calculation of k when m is given.

For mo in {1,2, ..., m}, let's solve k for

> P(J=jimk) = . (3.6.1)

j= m0, m

We know that the left hand side of equation (3.6.1) is a monotonically increasing

function in k. If
> P(J=jimk=0) > «a, (3.6.2)

j= m0, m

then use k=0. If

Y  PU=jmk=0) < a < 1, (3.6.3)

j= m0,m

then use a binary search to find k as a solution of equation (3.6.1). From Theorem

3.5.1, we know thut such a solution exists and is unique.

A Binary Search Algorithm for k, a solution of equation (3.5.10):
) letk; =12

) If X PUJ=jimk) > «,then kjrq =kj- (1/2)i+1. (3.6.4)
j=m0, m

If 3 P(J=jimk)) < o,then kjsq =kj+ (1/2)i+]. (3.6.5)
j=m0, m

3) If i <30, then goto 2).

After 30 iterations, we will have lkyq -kl < 10-9.

Note: Since m is unknown, an assumed value of m is used for this algorithm.,
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§3.7 The determination of k with the available information about m

X

:;ﬂ‘

when n is {ixed.

[
)
Cal |

T e
L e A

L

If no upper bound of m can be specified, the most conservative choice of m€, an

-

‘e
.

estimate of m, is n-1 when burn-in is required. In this case, for the corresponding k

value, we may try to derive it by replacing m with n-1. This is the same as what we

.‘.g " T, 1‘
.

A A

did in Procedure 1. Similarly, if the upper bound of m is given, say ner® and r€ in

) .

[0,1}, then we may hope to use m®=n«1€ and to find the corresponding m®0 and k. To

AN
S

guarantee that a more conservative rule is obtained when a larger estimate of m is used,

R
o

we need to show that P(J 2 m®o ! m€k ) is a monotonic function in m€. However, we

t

have the following difficulty:

Difficulty:

We should use P(J 2 m€ | mék ) = a to solve for k. However, I cannot prove that
k(m®), the solution of P(J 2 m€o | m€o0,k ) = ¢, is a monotone function of m. Thatis I
can't see when a larger k and a larger probability P( R(t; D, m, n) 2 p) will be
obtained. One conservative k is obtained by letting k = max{k(m); m ranges over its
possible values}. This k will give us P(R(t; D, m, n) 2 p) 2 o based on the following

theorems.

Define f(m€,k) = P(J 2m® I mk).

Theorem 3.,7.1:

For fixed n, m and m€, f(m€,k) is a monotonic increasing function in k.
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Proof:

We have P(J 2 m®o Imk ) =P( Uy < Cy, **, Upye < Cpe 1 mk ) and for

i=0,1,00,n-1, Cy=is(l-exp(-t))/{(n-i)*(1-k)+(i*(1-exp(-t))} is a monotonically

increasing function in k. Using the property of uniform order statistics, for fixed m

and m€, It's clear to see that f{m€ k) is a monotonically increasing function in k. The

proof of this theorem is completed.

Note:

1. This theorem tells us if a larger k is used for a given burn-in lot then a higher
reliability will be achieved through burn-in, since the boundary of stopping time is

increased. That is a conservative rule is used if a larger k is used.

[3S)

For fixed n, m, and k, f(m®,k) is a monotonic increasing function in m¢ where m¢
is an estimate of m.

3. Fora given bum-in lot with unknown m, suppose m1¢ and ni2¢ be two estimates
of m with m1€ < m2€, If k1 is the solution of P(J 2 m1% | mk )= o and k2 is the

solution of P(J 2 m2% I m,k ) = o, then k1 £ k2.

If there is a prior distribution of m, M ~ P(M=mlf) form = 0, 1, *«s, n, then we
may use Bayes Rule or follow an argument similar to that of Procedure I to obtain an

. _:;. appropriate percentile of m and use the result in §3.5 and §3.6 to get the appropriate

value of k.

For finding the Bayes rule, suppose M -~ P(M=mlg) form =0, 1, *++, n, then
P(R(; D, M, m)2p)2a

<:>Em;0,n P( ] = moim,k )P(M=mlB) 2
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Z . (3.7.1)
Note: If m < ne{(1-p)/(1-exp(-1)}, no burn-in is required, then P(J 2 moim,k ) = 1.
To determine k using an appropriate percentile of m, let 8 = Vo and m8 = min{ m:
P(M < m) 2 B}. Let k be the solution of kg such that
P(J2mfotmB ) = P(R(t; D, mB, n) 2 p ) = a, where mBo is defined as the mo of m.
In particular, we have
P(R(t; D,M,n)2p)
= Yn=0.n P(J 2 moim,kg )eP(M=ml0)
=ZOSmSmBP(szoIm,kg)-P(M=mI6)+ZmB<MnP(12m0Im,kB)-P(M=mle). (3.7.2)
If the solution of k, k(m), obtained by using P(J2moim,k) = o is an increasing
function of m, then we have the following inequality, for P(R(t; D, M, n) = p ). This
is the difficulty described in Section 3.6.
PC(R(; D,M,n)2p)
2 Loemems B P(M=ml0)+3 5 . P(J2molm,kg)-P(M=ml@)
2 BB + X g menP(J2moim kg)*P(M=mI6) 2 a. (3.7.3)
(Note: We are expecting to have Iz < P(I2molm,kg)*P(M=ml0) < (1-a)1/2)
Here, the derivation of kg is much more difficult if we are going 1o solve (3.7.2).
However, a lot computational effort can be saved if (3.7.3) is used. In this case, we

only need to find mB and we have a conservative stopping rule. Note that, in this case,

this rule might be 100 conservative.




§3.8 E(D|m,k) and the Distribution of D

The expected durations of burn-in based on the rules defined in this chapter (or
equation (3.4.13)) is denoted by E(Dim,k) when m and k are given. From the
definition of this stopping rule, it is known that burr-in will be stopped at S; or S, or

.. OF Sp,, with probability P(J=0im k), P(!=11 m,k), ..., P(J=mim,k). Hence

E(Dim.k)

=y Sj+1-P(J=:jlm,k)
i=0,m

= }:0 SJ +1 (m!/(m-j)!)-(l-CjH)m-J-Bj (3.8.1)
j=0.m

where Cj = 1 - exp( -Sj ) for j=0,1,...,m and Bj is defined as in (3.4.13).

If m has scme prior distribution, M ~ P(M=mlp), then

- E(Di k)
- = o0 PiM=mlp)*E(DIm k)
:::' = E’m:().n P(x\'x=m10}‘2j=0‘m S_"(m'/(mj')’)'(l-CJ.q)m'J'BJ. (3.8.2)

The duration of burmn-in, D, of this rule has discrete values: C;, for i=1,ee» m+1 (or
n). Itis clear that
P(D=Cj41!m) = PUp=i) for i=0,1,eee,m. (3.8.3)

Stopping at C;4 1 is the same as screening out i defectives.
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§3.9 To compare the duration of burn-in for a given burn-in lot when

Y
A 4t
Al

P

LY

'S

different estimates of m are used.

e

o

o For & giver burn-in lot with unknown m, suppose ml and m2 are two of its
s cstimates with ml < m2, let k1 be the solution of P(J 2 mloImlk) =0 and letk2 be

N

b

the solution of P( J 2 m20 i m2,k } = a. In this section, we are interested in whether
E(Dim.k1) is less than E(Dim,k2) or not. This can be used to decide if a larger or
smaller estimate of m should be used in deriving k. In order to save burn-in time, we'd

like to pick up the estimate which gives us shorter expected b rn-in duration, provided

) q"’ : . _t
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v the reliability goal is met.
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From Section 3.2, we know thai if k1 < k2, then the stopping time boundaries

[
[

’
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Citkl) £ Cj(k2)) for i=1,2,>++.n-1, where Cj(k1) is the C; obtained by replacing k with
‘_ k1 and C;(k2) is the C;j obtaired by replacing k with k2. So, we have the following

Theorem 3.9.1. Before proving this theorem, we need the following trivial lemma.

Lemma 3.9.1:

Suppose ml and m2 be two pcsitive integers with m1 < m2, P1 and P2 be two

Y
Wy

BRI

g M

oY
»

probability functions defined on {0,1,2, es¢} with ZOstmIPI(j) = 1 and Zggiem2P2()

"'..

v Y
R &
L

b

= 1 and, for i=0,1,se, ZingmlPl(j) < ZisJszpzﬁ)- Let g1(i) and g2(i) be two

R 4
LA

positive and increasing functions defined on {0,1,2,0s¢} with gl(i) < g2(@i}. 1f the

o7
%

P "':' e

\

above canditions are true, then
Zigjem 81D P1() € Tigjemae 2()*P2() (3.9.1)
Note:

a
r
~
alL s

=
: I"l

. «
. ':l'l‘.

. L3 Y
(3]

1§ a1(i) = g2(i) for all i, we have cquality in (3.9.1).

If there is at least one 1 with g1(i) < g2(i), then we have inequality in (3.9.1).
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3 Theorem 3.9.1:

_:::-_ E(DIm,k) is an increasing function in k.

E::_ Proof:

> For j=2,e++,n-1, we have P(J 2 jimk) = P( Uj < Cy(k) for i = 1,eee,j-1) =
r::' _; 2iciemr1 PU=ilm,k) is an increasing function in k. In addition, we already have that,
b~ for i=0,1,e++,n-1, C;(k) is an increasing furction in k. For 0 £ k1 €k2 «1, using the
-t" above lemma, let P1(j)= P(J = jim,k1), p2(j)= P(J = jlm,k2), g1(j= C;j(k1) and g2(j)=
Y Cj(k?,). We have that E(DIm,k) is an increasing function in k. The prcof of this
E:; theorem is completed.

Note:

or”:

E‘_:"— Smaller estimates of m with k will give us shorter expected duration of burn-in. But,
Pty
- we should be very careful in his case, our reliability goal may not be able to a.nic. ed if
YA

m i1s under estimated.
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§3.10 To compare the expected durations of burn-in, in the same burn-

in facility, for the burn-in lots from different production lines,

In this section, we consider the case that two burn-in lots from two different
production lines are tested in the same bumn-in facility, same lot size n, To simplify the
discussion of this, we assume that the defective items in these two lots have the same
failure time distributior:s. The only difference between these two lots is the numbers of
defectives in them, say ml and m2 with ml < m2, both of these two numbers ars
unknown. Let mle and m2c be the estimates of m1 and m2, respectively, with mle <

m2e. Here, we are interested in which burn-in lot has longer expected burn-in

duration.

First, let's consider the case in which the same sequence of stopping times, the
samne k, is used for these two lots. This is the following theorem.
Theorem 3.10.1:
For two positive integers m1 < m2, E(DIm1,k) £ E(DIm2,k). (3.10.1)
Proof:
As in Theorem 3.9.1, the same k implies that we'll have the same Cj's.
We have, for 0 < ml <« m2 and j=0,1,2+s¢,n-1,
P(Uj m1 <Cj, for i=1,2,22,j} SP(Uj ;2 < Cj, for i=1,2,002,j).
where Uj yn1's are the uniform order statistics of siz: m1 and Uj ;2's are the uniform
order statistics of size m2. This inequality tells us that P(Jy1 2 j) SP(Jpp 2 ) for
j=0,1,2,00+, wwhere Jpp1 1s the observed number of the failed defectives if the number
of defectives in bum-in is m1, Jj;;0 is defined similarly. Using Lemma 3.9.1, the

preot «f this theorem is completed.
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x,
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This theorem 1ells us that burn-in will be longer tor the lot with more defective

w items, In addition, the comparison between E(Dimlek(m1le)) and E(Dim2e k(m2e)) is
;" considered, but no good results are ohtained. One difficulty is that numerical resuits
e

show that k(m) is not a monotone function of m,
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§3.11 The Number of Defective Items Left after Burn-In

Define L as the (random) number of defective items left after burn-in and ¢ be any
(fixed) non-neganve integer. As in Marcus and Blumenthal(1974), we might want to
buve P(L £ ¢) = o if this screening procedure is used. It is clear that L=m - J. We
have P(J 2 mo | m,k ) 2, which implies that P( L € m-m2 I m,k ) 2¢ . To find
P(L<¢), we may try to have appropriate parameters, t and p, such that m-mo=g.
However, we don't know what m 1is, even though it is a fixed integer. If the least
upper bound of m (or an appropriate estimate), ner with r in [0,1], is known and an
appropriate k value is obtained as described in the last several sections, then
P(L<g)
z2P(L<m-molmk)
2P( L <m- (nere(l-exp(-0))-ne(1-p) )/ (p - exp(-1)) ) 2 .

This inequality is true since
m - mo*

= m- {me(1-exp(-t))-ne(1-p) )/(p - exp(-t))}

me{1 - (1-exp(-t)/(p - exp(-t))] + n+(1-p)/(p - exp(-1))
=-me(1-p)/(p - exp(-t))} + ne(1-p)/(p - exp(-t)) (3.11.1)
and (3.11.1) is monotonically decreasing in m ( as we have in the previous two

chapters) and ner is an upper bound of m.

If m has known prior distribution, say M ~ P(M=ml8) for m=0,1,2,+*n, then
P{ L <¢lBk)=P(J2M-¢!60k]}

=¥, 1-0aP(M=miB)+P( ] > m-¢ | M=m/k)

=ZOSmSQP(M:mie)+EGSmSnP(I\-'I=miG)-P(J 2 m-¢iM=m,k) = . (3.11.2)
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Theorem 3.11.1:

The smallcstk in [0,1] such that (3.11.2) holds if 0 < « < 1 is quaranteed unique.
Proof:

Since, for m=0,1,2,¢¢+.n, Theorem 3.7.2 tells us that P(J 2 m-¢iIM=m,k) is an
increasing function in k. For k=1, the left hand side of (3.11.2) is
EOSmSQP(l\"IzmI9)+}:95m5nP(M=m!9)-P(J 2 m-¢IM=m,1)

= 20emegPM=mIB)+Z e P(M=miB)e1 = 1.

For k = 0, the left hand side of (3.11.2) is

ZOSmS?P(M=ml9)+EQSmSnP(M=m|9)-P(J 2 m-¢IM=m,0). (*)

If (*)2 o thenk=0.

If (*) <a < 1, then, using the property that P(J 2 m-¢IM=m,k) is an increasing
function in k, we have a unique k in [0,1] as the solution of (3.11.2).

The proof of this theorem is completed.

Note: P{ L <¢ |0,k } for some fixed ¢ is the probability of the number of defectives
in a randomly chaosen production lot after burning-ir: is less than ¢, where the burn-in

lot size is n and the number of defectives in it before burn-in has prior distribution

P(M=m!0) for m=0....n.

For M ~ P(M=miB), the expected number of defective items left after burn-in can
be calculated, too. Let's consider the case that M is binomially distributed with
parameter n and r where ris in [0,1]. We have
P(M=mlr) = (n'/an! n-m)N))erMe(1-)R-M for m=0,1,2, . (?.11.3)
and

P(J=j,M=mir k)
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= P(J=jim,k)*P(M=mlir)

= (m!/(m-}))+(1-Cj41)™J*Bj*(n!/(m!(n-m)!)))rM+(1-0)""M  (from Theorem 3.4.1)
= (n!/[(m-j)!-(n-m)!)])°(l—r)“'m-(l-Cj+1)m'j-rm-Bj (3.11.4)

In this case, for m = j,j+1, ..., n, the posterior probability of M given J=j is

P(M=ml]J=j, 1, k)

= P(J=;,M=mlr k)/(¥ - P(J=j,M=plrk) ) 3.11.5)
K=jn .
= (n!/[(m-j)!-(n-m)!)])~(1-r)“'m°(1-Cj+1)m'1-rm Bj/{[(n!/(n-j) e Z[(n-j)! /[ (u-)!
H=j,n

(n-p)!]+(1-n)He(1-Cj+1)H-Jerk-+B; )
={(-DY(-m)le(mej)1) J+{(1-)PMa(ee(1-Cy DI/ 1-T41(1-Cip IO )
={(-(n-m)!o(m-§)1)) + (1-D/[(1-r+12(1-Cj )]V}
(1 (1-Cj /L Lr4ro(1-Cy )] 1) (3.11.6)

which is binomial.

We have L = M-J, the number of defective items left after burn-in. So the posterior
probability of L given J=j is
PlL= ¢ IJ=j, r k)
= { (-PUn=j-0I01) Jo{ (L-r)(1-12Cy PTG Jo{ro(1-Cjp )/(U-1+Cj DIS (3.117)
which is derived from (3.11.7) by replacing m-j with ¢. Hence, given M ~ Rin(n,r),
j=j and k, we have that L is binomiaily distributed with parameters n-j and re(1-
Cj+1)/(1—r°Cj+1). So the expected number of defective items left after this burn-in
procedure being stopped with j failed defective items observed is
E(LJ=] k) = (n-ier(1-Cj4 /(1-1Cjy ). (3.11.8)
It 15 clear that, given M ~ Bin(n,r), the expected number of defectives left after burn-in
is

E(Lirk) = % o, PU=jlnk)*E(LE,K) (3.11.9)
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where

PU=jirk) = ¥__. P(J=j,M=mlrk)

m=j,n

= Emzj'n(n!/[(m—j)!-(n-m)!)])'(l-r)"'m'(l-Cj+1)m‘j-rm-Bj.
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CHAPTER 1V
PROCEDURE II - LARGE SAMPLE THEORY

§4.1 Introduction

In this chapter, limp.5P(R(t;D,m,n)2p) is investigated through
limpy.50eP(Um:1 <C1(k), Um;2 < C2(k), ***, Un:mo < Cmok)),
where Upy:j is the i-th uniform(0,1) order statistic from a sample of size m, C;(k) iz
defined as in chapter 3, and m is the assumed true number of defectives in a burn-in lot
with size n and O<lim, ,..m/n=r < 1. This investigation tells us the following results:
1. limp5e.P(Um:1 < C1k)) < 1. (4.1.15
Thus, limm. >ecP(Up:1 < C1(k), U2 < Co(k), *»+, Um:j < Ci(k)) < 1 for any i,
I<i<m
This tells us that lim,_s..P(R(t;D,m,n)2p) 2 a may not be achievable if we do
not modify this stopping rule to prevent it from stopping at an early stage of burn-
in. For 1 €i(m) € mM with o < 1/2, we will see in §4.2 that the limit of the

converted stopping time limy-see Yme( Cj(m)(k) - i(m)/m ) = 0. (Note: If

lim sup i(m)/Nm = 0, then lim 13500 Vm#( Ci(m)(k) - i(my/m ) is still 0.) This limit

tells us that the chance of stopping this screening procedure before the first Vm

3

%
N
M
N
\l

I

defective items have failed is high, i.e., the chance of stopping this rule before mo

defective items are eliminated is high. [n addition if imp,._., i(m)/\l'm is a constant,

-

RRRN X5

then lim ,H_W\.’m-(ci(n,)(k) - i(m)/m ) is also a positive constant and
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" - limm-5eP(Um:i(m) < Cigmy®k)=1.
;_'; The limit, inequality (4.1.1), will be discussed in detail in Sections 4.2 and 4.3.
- 2. Let j(m)and n(m) be arbitrary functions of m satisfying
P mH < n(m) < mo-mM < j(m) < mo, (4.1.2)
\
- f,.g where il is a constant with 1/2 < i < 1.
A -5\
-; :_.: If k=p,
" .
1 11%_MP(Um;mu<Cmu(k),Um:mpH<Cmp.+1(k),"’,Um.n(m)<cn(m)(k))=1 , (4.1.3)
) Limy 5 eoP(U msmy <1000 U imy+1 <Citmy 1 (K01 Um0 <Crno () < 1. (4.i.4)
\--
‘ -f:;:'. In addition, if k > p then
T limm_mP(Umm(m)<Cn(m)(k),Um:n(m)+1<Cn(m)+l(k),---,Um:mo ~mo(k)=1.(4.1.5)
o~ Equation (4.1.3) tells us that this stopping rule will not allow the burn-in process
:_Z:: to stop before the number of defective items eliminated is very close to mo- m¥, if
S - it has not stopped prior to stage mK. As in (1), the case p=1/2 is of interest to us
and it will be studied in detail in this chapter. Inequality (4.1.4) will be used to
find the value of the constant k so that P(R(t;D,m,n)=p) 2 o is ensured under this
- stopping rule. Based on (4.1.1), (4.1.3) and (4.1.4),when k=p, if we don't stop
)
. burn-in at an early stage then bumn-in can only be stopped in a small neighbornood

of mo. The study of this neighboihood is the most important part of this chapter.

FJ
*a

In addition, Equatior (4.1.5) tells us that if burn-in is not stopped at an early stage

and k is inore than p, then the limit of P(R(1;D,m,n)2p) as m goes to infinity 1s 1,

[ g

I A L
LR S A P
.-‘v\ h e N ) .'. e

Based on these results, two algorithms to find k are developed. Note from (4.1.4)

f

.- and (4.1.5) that as n —> e, we must have k=k(p,c.m,n) —> p. One of these two is

- quite 2asy to use to obtain k. This is the major application of the large sample theory of
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this procedure. Remember that the algorithm to find k in the previous chapter is very

complicated. In addition to this, equation (4.1.1) tells us that our reliability goal
may not be achievable unless the early stopping bounds Cj(k) are defined

appropriately.
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A

i § 4.2 Notation and Definitions

uf:'

Fh-:

t:}_: Let Ug, Uy, *s*, Uy, denote independent uniform[0,1] random variables cn [0,1],

and define the uniform empirical distribution function Gy, by

e Gm) = (1/m)eXj=1 m1(UjSu) for0<u <1 (4.2.1)
k

e where

-2 (Ui S u) = 1if Uj S u, otherwise 1(Uj €u) = 0. (4.2.2)

The inverse of the uniform empirical cistribution function is defined as
Gy L) = inf(x: Gp(x) 2 u) =Upy for (i-1))mgu<i/mand 1<i<m (4.2.3)
with Gy~ 1(0) = 0, where

Satihcade cath? T ;
e [t
LI - AP

E" Umil SUm2 S SUn:m < Umm+1 =1 (4.2.4)
E denote the uniform order statistics. For O € u £ 1, define the uniform quantile process
b V(1) = Vme( Gy~ (w) - I(w) ) @25
and let
V(1) denote a Brownian bridge. (4.2.6)

We have the following well-known results ( The proof and the discussion of these

results can be found in Billingsley (1968), or Csorgo (1983), or Shorack and Wellner
r
(1986). The proofs will not be repeated here ). For 0 S uj€up ..<ujs 1,

f::._ (Vi) Viu2), ...V} =g (Vup, V@), ..V(u))} asm = e,  (4.2.7)

i.e., Vi converges to V in finite dimensional distributions (Csorgo (1983, page 12))

Morcover, the quantile process, Vy(u), converges to the Brownian bridge, V(u),

l- ("‘l' ‘l...l-

weakly in the space of discontinuous functions with right limits equipped with the

Skorokhod topology. The Skorokhod representation implies that there exists a

Ll

probability space with a sequence of Brownian bridges { V¥™(u); 0<u<1} such that

SUP guet | V() - VFM(u) 1 —>5 0 (4.2.8)
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ﬁ as stated in Csorgo (1983, Equation (1.5.13)).

We now introduce some definitions which translate the index scale to the unit
interval. Under the condition
Lisity seo(m/n)=r,
forexp(-t) £ w £ 1, define

mo(m)= [me(1-exp(-t))-ne(1-10)[/(m-exp(-1))

Smo = Smo(®i = mo(r) /m and

S0 = So(T) = Mty seo Sp(T) = limityy_s.0o(mMO(T)/m).
We have s

= limity_seo(1/m)* {[me(1-exp(-t))-ne( 1-1))/(m-exp(-0))}

= {re(1-exp{-1))-(1-m) }/[r+(m-exp(-1))]

= {(1-exp(-t)-((1-r)/r) }/(m-exp(-1)).
Note: sy(n) is an increasing function in 5. (4.2.9)
If limity s j(m)/m =5, we have
limityy.see Cjmy&)

= limityy. o0 j(m)'(l-exp(-t))/{(n-j(m))-(l—k)+j(m)-(l-exp(-t))}

= limityy see (J(m)/m)+(1-exp(-1))/{ (n/m)s(1-k)+((m)/m)e(k-exp(-1))}

= se(L-exp(-0)/ [ (1/r3+(1-k)+s+(k-exp(-1))}. (4.2.10)
If 1 £j(m) €mH with 0 < <1, we have

limitpy.see Cjm)(k) = 0.

This is 4 special case of (4.2.10), i.e., s=0.

Using the above results, we can prove that

limity. seoP(R(G:D.m,n)2p)
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1

is the boundary crossing probability of a Brownian bridge (quantile process).

o e

L)

However, the mean and variance of V(0) are both 0, and the boundary at 0 is also 0.

(See Equation {4.2.1) below.) So, we have the following difficulty: there is some

unclear positive probability that the stopping rules, defined in Chapter IIl, stop before

r
L "l .

LN

i g g
ey

a sufficient proportion of defective items is removed. In order to avoid this difficuity,

ey
[ AN .

l‘

Iet's modify these rules by replacing the Ci(k)s with Cryu(k) if 1 <1< mM, So, we use

cor
.

NN

the Modified Stopping Rule:
Stop burn-in at Cj*(k,t) when the first i is reached with U; > Cj*(k,u),

CURARREN

where

A

Ci*k,p) = Cpyuk) if 1 €i € mi,

e
- ta

Cj(k) if mH < i < n-1. (5.4.1)

:
:

After this modification, thz stopping times of Stopping Rule (§.4.1) will mainly
depend on mo(k)/m. We can see this property from Lemma 4.2.1 below. In Section

5.4, we will study the case that mis at least 320 and n is 4000 numerically.

Let limity_s,m/n=r. We have

limity soo VM (Cjrny(k)-j(m)/m) (4.2.12)

limity 500 \/m-(j(m)/m)-[(l-exp(-t))/{((n-j(m))/m)~(1-k)+(j(m)/m)-(1—exp(-t)) -1}
= 0, if j(m) = o(Nm), (4.2.13)
= ¢ for some -ee< ¢ <oo if limitn_w(j(m)/\;m)q;!/{r-(1-exp(-t)')/(1 -k)-1}, (4.2.14)
= e if sy(k) > limity. 50 j(m)/mi and lim ‘.nfj(m)/\’m = 4oo, (4.2.15)
= ¢y forsome -eo < ¢y <ooif

jlm) = me [(1-exp(-t) - (/mjs(1-K)+(] +Ll/\"m)}/[(k-exp(-l))-(1+u/N’m)]

where a=¢,/su(k) (see the following note), (4.2.10)
R R R A N A L P ANy LA e e e e e e e e PR NN RIS
VAT s W S WA S I T R e e e e e P o T e e A Rt M e PRI
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= -oo, if sp(k) < limity.5e0 j(m)/m £1. (4.2.17)

Furthermore, it is clear that

¢a = 0if limity s (j(m)/m - s4(k)) =1, (4.2.18)
¢a > 0if limity seo (j(m)/m - s¢(k) ) <0, (4.2.19)
¢a < Oif limity_see (j(m)/m - sy(k) ) > 0. (4.2.20)

Note: In order to ensure

liniity 00 Vme (m)/m)+ [ (1-exp(-0))/{ ((n-J(m))/m)+(1-K)+((m)/m)+(L-exp(-0) - 1} = ¢,
when limity ..o j(M)/m = 5,(k), we need to have

(1-exp(-t))/ ((n/m)+(1-k)+(i(m)/m)*(k-exp(-1)) - 1 = a/Vm for a = g,/s(k).

That is

j(m) = me{(1-exp(-t) - (n/m)s(1-k)+(1+a/Nm) } /[ (k-exp(-t))*(14-a/Nm)].

In order to remove at least mo defective items, we don't want to stop before sy{p).
To help achieve this goai, we repluce all Cj(k), 1 £j < Vm, by Cmuk), for 172 < <
1, since
limity-seo YM*(Cryu(k)-j(m)/m) = es, when lim sup j(m)/Nm = 0. (4.2.21)
We can take k > p to have P(R(t; D, m, n) 2 p) converge to 1 as m —> «. That is, if

k > p, the screening procedure defined by the modifizd stopping rule (5.4.1) will be

forced to ignore the first Vm failure times and the probability that the ratio, J/m,
A reaches sp(k) will be approximately one (if m is large enough). Moreover, (4.2.9)
, implies that s4(x) > sy(p) if k > p. Thus, we know that this screening procedure will
o stop after so(p) with probability approximately one, i.e., the probability that R(t; D, m,

n) 2 p will be anproximately one.

x
l‘,

.
DRI

L

s

Ty
»

¢

..... e e el e o o e A LA A e A A N
TR Lt S R L PR I AL P T PR TR ey e UL P LV R LRV W i e e



St 128

Using equation (4.2.21) and the facts that mean and variance of V(0; are 0, we

£
’.,:'(’:

have

g
o B .‘ ‘.‘,

LS
e

limity oo P(Um:1<Cmp(k), Um:2<Ciu(k), wo¢ Upy-mu<Crpu(k)) = 1 for O<pu<l/2.

2

'
[ ™

Before proving Lemma 4.2.1, for k 2 p, let's define

7
x_r
[

y .
i X4,
L .’ - 4
ete Iy N

LR
o
AL

50.(K) = so(p) - (s¢(K) - so(p))/2 and sy, (k) = sp(k) + (s9(k) - so(P))/2.

It is clear thatif k > p then

“ So,(k)<50(k)< SO+(k) and lim k-> p So_(k) =lim k-> p SO+(k). (*)

AR

The following lemma gives the boundary of Stopping Rule (S.4.1) in terms of sq (k)
and sq, (k).

Lemma 4.2.1:

For k > p,

lim inf Vane(C*j(p)(k)-j(m)/m) = +o0 if O < lim (j(m)/m) < s,.(k) and (4.2.22a)
lim sup Ve (C¥j(m)(K)-j(m)/m) = -eo if 1 > lim (j(m)/m) 2 sp,.(k). (4.2.22b)
Proof.

If 0 < limity. seoi(m)/m < sq.(k), then, by using (4.2.15), (*) and (4.2.19), we have

NESRANNT

lim inf Vme(C¥j¢)(k)-j(m)/m) = +<e. The reason is that

lim inf Vme(C*j(m)(k)-j(m)/m) < +eo may occur only when lim sup j(m)/m = 0 as
scen from (4.2.13) and (4.2.14).

If 1 >lim (j(m)/m) 2 sy, (k), then, by using (4.2,17) and (*), we have lim sup
Ve (C*j(m)(K)-j(m)/m) = -e=.

The proof of this lemraa is completed.

Here, k (ur sg(k) ) is the only parameter urder Sur cor.trol. If k is too large, alot

of time wi!l be wasted on extra burning-in. If k is too small, we might not be able to

.......................
........................................................
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achieve our reliability goal. In the following sections, we shall try to use the previous

lemma to find k(m) so that
P(\/m-(Um;j-j/m) < \/m-(C"‘j(k)-j/m), J=lemo(p)) 2 o 4.2.25)

for sufficicntly large m,
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§4.3 Property of the Transformed Stopping Time as A Boundary For

the Brownian Bridge

To investigate (4.2.25) in more detail, let's define
d(s,k)=d(s.r,k)=s-{(l-exp(-t))/[(1/r)-(1-k)+s-(k~exp(-t))]-1} forO0<s<1. (4.3.1)
For 0<s<1, m/n=r and j = [mes], it's clear that
Cjk) - j/'m
= j+(1-exp(-))/{n=(1-K)+je (k-exp(-1))} - j/m
= (/m)e { (1-exp(-0))/[ (n/m)+(1-k) + (j/m)e(k-exp(-t)) ] -1 }
~ 5+ {(1-exp-OY[(L/D)+(1-K)+se(k-exp(-1))}-1)
=d(s,k)for0<s< 1.

The function d(s,k) is a transformed stopping boundary of our unmodified stopping
rule. For our modificd stepping rule (S.4.1), detine
d*(j/mk) = N'm-(C*j(k) - j/m) for 1 <j < m. We have

Vmed*(s,k) ~ Ymed(s,k) for 0 < s < 1.

Moreover, by using Lemma 4.2.1,

if limit .. i(m)/m = s < s (k), then lim inf (Vm)d(i(m)/m) = .

If limity, ., i(m)/m = s > s, (k), then lim sup (Nm)d(i(m)/m) = -eo,

If 54.(k) <limity, ., i(m)/m = s < sy, (k), then the limit behavior of (Vm)d(i(m)/m)
depends on how k is defined as a function of m.

In addition, the corfidence of achieving our reliability goal, R(t;D,m,n)2p,
PR(4D,m,n)2p)

= P(\’n-x-(Um:j-j/m) < \/m-(C*j(k)—j/m), j=1,000,mo(p))

is approximated by




T e R i AT el

Y
<

000 e | s

s

131
P(V(s) < V(ner)sd(s,r,k), for 0<s<sy(p)) (4.3.2)

. a‘«-’
4

In (4.3.2), we omit the point s = 0, because for C*j(k), the limiting process cannot

cross its boundary at s=0.

s .J_')_

So, N’m-d(s,k) iy the boundary of interest to us.

LN
:-;\ Using Lemma 4.2.1 and Equation (4.3.2), we know that
N P(R(1;D,m,n)=p)
‘;::._::u = P(Vm(j/m) < m1/2d(j/m,m/n k), for O<j/m<sy(p))
By using the weak convergence of Vg, to V as described in (4.2.8) and the above
i :M discussion, we have
". , P(R(t;D,1n,n)2p)
E ~ P(V(s) < Y(n+r)+d(s,k), for O<sssy(p)) ~ 1, itk > p, (4.3.3)
i

when Stopping Rule (4.2.1) is used, i.e., assuming
P(V(0) < liMyy e and j(mym->0 VI (C¥j(m) k)-j(m)/m)) = 1.
In crder to ensure P(R(t;D,m,n)=p) = o,we can find an appropriate k(p,x,m,n) by

solving

P(V(s) < V(ner)sd(s,r,k(p,0,m,n)), for 0<s<sy(p)) = a, or

e P(V(s9(p)) < V(n+r)+d(so(p).c.k(p.ctm,n))) = e (4.3.4)
:.f" The reason is: P(V(s) < \/(n-r)-d(s,r,k(p,a,m,n)), for O<s<sg(p)) = 1 fork =2 p. In
@

addition, we will show in Section 4.4 how to choose k(p,o,m,n) so that

P(R(t;D,m,n)2p) 2 a.

Before giving the procedure to tind an appropriate k, let's investigate some

properties of d(s,r,k).

..................
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":“ Lemma 4.3.1:

tki (H FmOﬁnkSLd@mb>0ﬁaMOMyK0<s<%&y

\:; (2)  d{s,r,k) is an increasing function in k and r.

e Note: We are interested in the case d(s,r.k) > 0, i.e., limity.soo V(n*r)ed(s,r,k) = oo,
‘““ because we'd like to have our reliability limitm_;.ooP(R(t;D,m,n)zp) close to 1
: : : (exceeding or equaling ).

2 Proof:

| i Since s > 0, to prove d(s,r,k) > 0, we only need to show

" (1-exp(-0)/{(1/r)+(1-k)+s*(k-exp(-t))}-1 > 0. (4.3.5)

Inequality (4.3.5) is true
<=> l-exp(-1)) > (1/r)s(1-k)+se(k-exp(-t))
o <=> s < {(l-exp(-0)) - (1/r)(1-K) }/(k-exp(-1)).
Itis clear that d(s,r,k) is an increasing function in r and k. The proof is completed.
Note:
:E::: 1. For0<s< 1, weare only interested in the case that
- 0 < ((1-exp(-1)) - (1/r)e(1-k)}/(k-exp(-t)) < 1. (4.3.6)
i .,: The right hand side of (4.3.6) is true

’ <=> {(1-exp(-1)) - (1/r)*(1-K)} < (k-exp(-t))

x::_i.: <=>l-exp(-t) - 1/r + (1/r)sk <k -exp(-t)

.“‘ <=>ke(l/r-D)<l/r-1

<=>k <1,

I .:-' k < 1is always true, otherwise, at k=1, Cj(l) = 1 forall j, i.e. never stop burn-in
’::“:, until all items are removed from burn-in lot.
) ‘E The left hand side of (4.3.6) is true

':.- <=>1 - exp(-) > (1/r)*(1-k)
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<=>r1> (1 -Kk)/(1 -exp(-1)).

This tells us that no burn-in is required if r < (1 - k)/(1 - exp(-t)).

2. For any fixed 1, if k1 < k2, then d(s,r,k1) < d(s,r,k2). This tells us that for two
burn-in lots from the same production line. The lot using larger k will have longer
bum-in duration and higher P(R(t;D,m,n) 2 p) if n is large enough.

3, For any fixed k and r, d(s1,r,k) < d(s2,5,k) if s1 < s2. This tells us that, when the
same stopping rule, same k, is used for the production lots from the same
production line, more time is required to screen out more defective items.

4. For any fixed k, d(s,r1,k) < d(s,r2,k) if r1 <r2. Therefore, if the same k is used
for different burn-in lots from different production lines, more burn-in time is
required for the lot with a larger proportion of defective items in it. In this case,

more defective items must be eliminated through bum-in for the lot with more

defectives.

In order to have limp soP(R(t;D,m,n)2p) > o, we must have sy(k) 2 sg(p). The
following theorem tells us when this is true in terms of k.

Lemma 4.3.2;

W When bum-in is required,
:__ d{sg(p),i,k> > 0 (or < 0) if and only if k > p or (< p). (4.3.7)
: :“ Moreover, dencte sy = Smo(p), and take € > 0.
., ~ If k- p2¢, then limity. soeVMed($o.r.K) = co. (4.3.8a)
-;_*, If k-p<-£, then limitm_>N\/m-d(sm0,r,k) = -0, (4.3.8b)
.§\ (Here, limityy.se0 Smo = So-)
\:‘S In addition to this. fork 2 p and 1/2 < <1, me-mM > j1(m) > mH and
R = lim inf j2(m)/Nm=0, we have
o,
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o Hmitgy. seeVmed{j1(m)/m,r,k) = co (4.3.9a)
< limiig .00V med(G2(m)/m,r.k) = 0. (4.3.9b)
Note:

1. Equation (4.3.8a) says that our reliability will be achieved with probability 1 if

"N k> p.
. Equation (4.3.8b) says that with probability 1 our reliability will not be achieved if
;_:: k <p.
’ 2. Equation (4.3.9a) tells us that if k2 p, with probability approaching one, as m
: incresaes, Tj < $(j,k), where mo-mH > j(m) > mH tor i/2 < U < 1. Equation
: '::: (4.3.9b) indicates the range of j(m) where we are not very sure about the
J.' probability performance of this stopping rule.
:‘_ l Proof;
- We have smg(p) = smg > 0 when burn-in is required. In addition,

d5mo) = smo*{(1-exp-D)/{(1/1)*(1-K) + spqe(k-exp(-1))]-1} and

; d(sy) = limity_see d( spq) = sge { (1-exp(-t))/[(1/r)*(1-k) + sp*(k-exp(-1))]-1}

where sg= sg(p).

__ So, we only need to show that

i ,." (1-exp(-1)) - (1/1)e(1-k) }/(K-exp(-0)) > 50 <=> k > p. (4.3.10)
- The left hand side of (4.3.10) is true

.‘ <=> ((1-exp(-)) - {1/r)+(1-k) }/(k-exp(-1)) > {(1-exp(-1)) - (1/r)+(1-p) } (p-exp(-t))

<=> (p-exp(-1)*((1-exp(-1)) - (1/1)*(1-k}} > (k-exp(-t))e { 1-exp(-1)) - (1/r)s( 1-p)}
<=>((T-exp(-0)-(1-p))* { (1-exp(-t))-(1/r)+(1-k) } >((1-exp(-t))-(1-k))s { (1 -exp(-t))-(1/r)e
(1-p)}

-~ o
@7
. Ay,

-
PR A

(e
= <= -(L-exp(-0)+(1/r)e(1-k)-(1-p)e(l-exp(-1))
o > -(T-exp(-0))(1/r)+(L-p)-(1-k)=(1-exp(-1))
9.,
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<=> (l-exp(-1))*(1/n)+(k-p) > (1-exp(-1))*(k-p)
<=> (1/r)*(k-p) > (k-p)
<=> (k-p) > 0, since 1/r > 1.
Equations (4.3.8), (4.3.93), (4.3.9b), (4.3.9¢) are trivial results of the above

derivation. The proof of this lermma is completed.

Note:

1. For 1 <i(m) = o(¥m) and j(m) <i(m), (4.3.9¢) tells us that Yme(Cpyo(k)-j(m)/m)
converges to 0 as m -> eo. In addition, the mean and variance of \/m-(Um:j-j/m)
go to 0. So, the probability,
limity. 500 POMe(Upy:j-i/m) < Vme(Cj(k)-j/m), j=1,2,004,i(m))
is not clearly given by the large sample theory, as mentioned before. To have a
better picture of
limityy. >0 POVMe(Uppyj-i/m) < Vme(Cj(k)-j/m), j=1,2,00s,i(m)),
we'll study this limit for small "i(m)"s in section 4.7, How can we avoid this
difficulty? Remember that
R(t;D,m,n) 2 p
is true only when at least mo(p) failed defectives are observed and the mo(p) is of
order m. Therefore, we can avoid this difficulty by making the above probability 1
by increasing the boundary Cj(k)'s. Using (4.3.9b), C;(k) can be modified as in
our modified Stopning Rule (5.4.1).

2. Whenk=p, limitm->m\/m°d(j(m)/m) goes from positive to negative as j(m)

crosses mofk). Clearly, for 1/2 < 1 < 1, limitpy s eoVmed(j(m)/m) = oo if

i
MR T
rT e

v,

lim inf j(m)/Nm = 0 and j(m) € mo - mi., In addition, we have

a
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limityy). oo VMed(j(m)/m)= -o0
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{ if n-12m > j(m), and lim inf m*{j(m)-mo} =
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§ 4.4 Approximating k via Large Sample Theory

An equation to obtain an appropriate "k" is obtained in this section. This equation
is based on the large sample theory developed in the previous sections, especially

Lemma 4.2.1 and Equation (4.3.4), when a suitable boundary for this screening

process at syg(k) is given. We know that, for Stopping Rule (S.4.1)
lim , P(R(t;D,m,n)2p)=1 fork > p and

lim, . .P(R(t;D,m,n)=p)=0 for k < p.

In addition, equation (4.3.4) tells us that

lim,_, P(R(t;D,m,n)2p) =

can be achieved it we can find an appropriate k(p,a,m,n) such that
P(V(so(p)) < V(ner)+diso(p),r.k(p,a,m,n))), 0 < s < s0) = .

So, we only need to obtain a k(p,o,m,n) with P( V(s) < h=(s), 0 <'s < s0) = cx.

We have, for any fixed s,
V() ~ NONGA-sD)) o VN(s(I-s) ~ NO,). (4.4.1)
For any o in (0,1), we can easily find a number b=b(a) in (-ee,e¢) such that, for any
fixed s with O<s<l,
P(V(s)/N(s+(1-5)) € b)) = a. (4.4.2)
In terms of V(s) and \/(n-r)-d(s,k), at s5(p), we'd like to have, for n -> o and

m/n->r,

lim e, (V(ner) ed(smo(p), .k (P,04m,1)) A (50()* (1 SmoP)) = Bar).  (4.4.3)

Based on these three relations (4.4.1), (4.4.2) und (4.4.3), Lemma 4.4.1 tells us how
to find k. In addition, Theorem 4.4.1 tells us that our reliability goal will be ensured if

the vaiue of k obtained by Lemma 4.4.1 is used.
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Lemma 4.4.1:
When m is large enough, for any real number b, we will have
(V(ne) }od(smo(P).5k(p,0t,m,0)) = beV(smo(P)*(1-5mo(P))) (4.4.4)
if and only if
k{p,0,m,n) ~ p + ro{(p - exp(-tIA1 - D) }o[b/ (V[mesg/(1-59)) +b}] (4.4.5)

where r=m/n and sg = s¢(P) = liMity.s008mo(P)-

Proof:

(Lemma 4.3.2 and its foliowing notes will be used in this proof.)

et Smo = Smolp) and d(spmo)= d(sq0(P).1k(p,ct,m,n)). We have

(N (ne1))*d (5o (P) 1k (P,c,ms,m)) ~ beV(sp(P)+ (1-5mg(P)))

<=> d(s0) ~ (V(Smo*{1-Smo)) }*b/Vm.

In addition

limity, ., d(smg) = sg*{ (- exp(-O)/[(1/r)*(1-K)+sq°(k-exp(-))]-1}.

Using these two equations, for m being large enough, we have

disg) ~ {(V((1-50)*s0)} s/ vrm

(1-exp(-D)/{(1/r)s(1-k) + spe(k-exp-0)}-1 ~ {(V((1-50)/s0)}-bm
(1-exp(-0)-(1/r)*(1-k)-sq*(k-exp(-1))~{ (1/r)«(1-k)+s¢*(c-exp(-)) }+ (V(1-50)/s0s}*b/Nm
ke(1/r - s)+1-exp(-t)-1/r + sgeexp( 1)

~ -ke(1/r - 8)o (V((1-s)/sq) } *b/-Im + (i/r -seexp(-t))» {N((1-59)/sp) }*b/Nm

ke (1/r-50) {1+[V((1-50)/59)}+b/Nm)

~ (Ur-sgeexp(-t))*(1+{V((1-50)/sg) *b/Vm}-(1-exp(-1))

k ~ (1/r -sgvexp(-G)(U/r -sg) - (1-exp(-DY{(1/r -s)*(1+[V((1-sp)/sp)]*bNm)}. (4.4.6)
Further more, we have

(1/ -speexp(-D)/(1/r -s¢) = (1 - resgrexp(-D)/(1 - 10sg), (4.4.7)

1 - 1resgeexp(-i)

- . . S S LR R R S R R T
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= 1-re{re(l-exp(-0)-(1-p) Jrexp(-1)/{re(p-2xp(-t))}
= {{p-exp(-0)) - r*(1-exp(-t))+exp(-t) + (1-p)-exp(-t) }/(p-cxp(-1))
= {pe(i-exp(-1); - r(1-exp(-0))+exp(-1) } }/(p-exp(-1))
= (1 - exp(-t))+(p-reexp(-1))/(p-exp(-1)), and
1-resg
= 1-refae(l-exp(-0))-(1-p)}/{r(p-exp(-1))}
= {p-exp(-0) - ro(1-exp(-) + (1-p) }s{p-exp(-1))
= (1 - exp(-))*(1- r)/(p-expl-0)\.
S5U,
(1 - resgrexp(-0)/(1 - 1esg)
o = {(1 - exp(-0)=(p-roexp(-0)/(p-exp(-1))} /1 {1 - exp(-)=(1- N/(p-exp(-t))}
B S = (p-reexp(-1))/(1- 1)
... = p+rp-exp-tH/(1 - 1), 4.4.8)
In addition,
(L-exp-t)/[L1/r -sp)e(1+{V((1-50)/50) } *b/Nm)]
= {r{(P-exp(-)A1-D V(1 +{N((1-50)/50)} *b/Vm) (4.4.9)
So, using (4.4.6) ~ (4.4 @), we have
, k(p,o,n1,n) = k
~p +[r+(p - exp(O)1 - DJ+[1 - Y1+ {V((1-55)59)) *b/Nem)]
R =P+ [r+(P-exp(-t)/(1- DI[{VIL-56)s0)) b/ N/ (1+ (V((1-50)/5) ) +b/~m)]
R =P+ [ro(p - exp(O)/(1 - )][b/ (V[mesp/(1-50)]+b)] (4.4.10)

The proof of this lemma is completed.
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Note:
- In order to study k(p,a,m,n), we'd like to write it as a function of r=my/n, i.e.,
':_:' k(r). (The behavior of k(r) will ve studied in the following sectior:.) Denote
< 59= $(p) = {re(1-exp(-1)) - (1-p)}/{r+(p-exp(-1))} W= have
- so/(1-59) = {re(1-exp(-)} - (1-p)}/((1-p)+(1-1)}.
In addition, if we define
8 K(r) = p + (p-exp(-0))+b/ (be((1/=}-D+VI(n/(1-p))e[ (1-expi-1)) - ((1-p)/r)
7 - (r(l-exp(-0)) + (i-p)11),
\ we can see that k(r) ~ k{p,o,m,n).
'; From (4.4.10),
= kK~ p +[re(p - exp(-t)/(1 - r)]s (b/{*/[nere {re(1-exp(-1)) - (1-p)}/
o ((-py(1-0l}+b))

= P+ (p - exp(-0)eb/{be(1-r)/r + V[n-[(1-r)/r][r+(1-exp(-1)) - (1-p)]/(1-p)]).
= P+ (P-exp(-0)+b / {b+((1/6)-1) + V[(n/(1-p))[(1-exp(-1)) - ((1-p)/r) -
re(1-exp(-0)) +(1-p)]]}

= k). (4.4.11)
- 2. The square root term in k(r) is positive if r > (1-p)/(1-exp(-1)). Its denominator is
,. posidve if (1-p)/(1-exp(-t)) <r < 1 which is the range of r of interest to us (burn-in
is required if (1-p)/(1-exp(-t)) <1 < 1).
®

3. k(r) 2 p when n is sufficiently large and burn-in is required. This is a trivial result

from (4.4.11).

From Lemma 4.4.1, we have the following theorem which tclls us that our

reliability goal, P(R(t;D,m,n)2p)2aq, is achieved if the value of k is obtained by using

s Equation (4.4.15). Before proving this theorem, let's define
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Z: a standard normal random variable, 4.4.12)

¥
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Z is the upper 100+cx percentile of Z, (4.4.13)

i
»

blam) = zgr N(smo(P)*(1-simo(P))s (4.4.14)

>

t, ",
2
L ST |
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k(p,a,m,n) ~ p +re{(p - exp(-1))/(1 - 1)}

-

h g
lt!
»
il

E

[b(ot,m)/{Vimesg/(1-55)]+b(c,m)}]. (4.4.15)
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Theorem 4.4.1:
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s >
v et
9 TP M
L

Under Stopping Rule (S.4.1), if k is defined by Equation (4.4.15), then

t

limit, . P(RtDmn)zp)=a (4.4.16)
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Proof;

¥

Under the Stopping Rule (S.4.1), we will ignore the firet mil 1/2 <11 = 1, Uj:m'g {the

first mH failure times of the defeciive items), that is

‘SBDODANEPS

3T limit; 50 P(R(G,D,myn) 2 p) = P(V(s) £ V(n°r)~d(s,k), O<s<sg(p))

= P(V(sp(p)) € V(ner)ed(s¢(p)))

= i ;->e0 P(V(sm(p)) € V(ner)}ed(smo(p).t.k(p,om,n)))

Using

V(ner) Jod(sm(p)r k(p,e,m,m) ~ bloe,m)eN(smo(P)*(1-smo(P)),

the expression above is equal to

limity_ 5o P(V(Smo(P)) < blom)sV(smo(@)*(1-smo(p) ) =7 <z )= a.

The proof of this theorem is completed.
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§4.5 The Behavior of k(r)

The following Lemma tells us the behavior of k(r). From the discussion below,
we can see that k(r) is a U-shaped function for 0 < (1-p)/(1-exp(-1)) <r < 1. Note: The
behavior of k(r) for r from Q 1o (1-p)/(1-exp(-1)) is not given, because no burn-in is
required if r is in this range,

Lemma 4.5.1:

Define: ro = (1-p)/(i-exp(-t)).

There exists a unique value ry, such that

k(r decreases on [10, ry] and increases on [ra.1].
Morcover. lim,, __ 1y = {(1-p)/(1-exp(-1))} /2 = 1o,
Proof:

Define

\

g(r) = be((1/r)-1) + {\’(n/(l-P))}'\/[(l-eXP(-t))-((l-P)/r)-r'(l-CXP(-I))+(1-P)J. (4.5.1)
Function g(r) is the only part of k(r) which hasr in ir and g(r) is the denominator in the
second summation term of k(r). The function k(r) increases as g(r) decreases, anda vice
versa. Let's investigate g'(r) first.
g'(r)=-b/r2+(1/2)'\/(n/(1-p))'[(l-p)/rz-(1-cxp(-t))]/\/[(l-exp(-t))-(1-p)/r-r-(1-cxp(-t))+
(I- pH]. (4.5.2)
The sign of g'(r) is mainly determined by the second summation if n is large enough.
For 0 <r <1, g'(r) is negative if its second summation is negative, since its first
summation is negative, The second term of g'(r) is negative if and only if
(1-p)r? < (1-exp(-1)) (4.5.3)
(T-exp(-0)-(1-p)/r-re(1-exp-))+(1-p) > 0. (4.5.4)

inequality (4.5.3) is true if and only if
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r > V{ (1-p)(l-exp(-tN} = Vro. (4.5.6)

ool

LWL R

PSP

22 Inequality (4.5.4) is true if and only if

s

(] f’Y.:i"

{1-r)e{re(l-exp-1)) - (1-p)}/r > 0 <=>

I B
(4
[l

>
St fov
X - ‘. " » l_l",:. ‘.‘A

r> ro. 4.5.7)

Tt

Recall that (4.5.7) is the necessary condition for burn-in,

So, for Vro<r < 1, k(r) increases (or g(r) decreases) as r increases.

=
a5
v

ror 0 €110, burn-in is not required.
For 10 <r < ro, it is clear that k(r) decreases (or g(r) increases) as v increases, but the

behavior of k(r) is not clear for r near Vro.

Let's investigate the behavior of k(r) in a neighborhcod of vro.
The derivative g'(r) is positive
<=> (1/2)(n{1-p))e[ (1-p)r2-(1-exp(-))J/V{(1-exp(-))-(1-p)/r-r(1-exp(-1)+(1-p )]
2 b/

<=> (1-pj-(1-expl-t))es2 2 2-b-\/((1up)/n)-\’[(1-exp(-t))~(1-p)/r—r-(1—exp(-t))+(1-p)]

Definz

w(r) = (1-exp(-t))-(1-p)/r-re(1-exp(-N)+(1-p). (4.5.8)
We have

g =20

<=> (1-p)-(L-exp(-1))er2 2 2ebeV((1-p)/n)sNw(r), (4.5.9)

w((1-p)/(1-exp(-1))) = 0,

w(I(1-p)/(L-exp(-1))) = (1 - exp(-)) - V(1-exp(-))*V(1-p) - V(1-pjel(1-exp(-)+(1-p)
= (V(1-exp(-1)) - V(1-p) )2 > 0,

The derivative w'(r) = (1-p)/r2 - (1-exp(-1)} is positive and decreasing for

(I-p)/(T-exp(-0) < r < [(1-p)/(1-exp(- 1)) 12, So, V’w(r) is positive and increasing for

N AR T
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? (I-p)/(l-exp(-t)) <r < */(l-p)/(l-exp(-t)). In addition, (1-p)-(1-exp(-t))*r2, decreases

as r increases from (1-p)A1-exp(-t)) to {(1-p)/(1-exp(-1)) }1/2. So there is a unique

r, > 0 such that g'(r,) = 0. Here, 1, is the point where g(r) achieves its maximum and
where k(r) has its (local) minimum. In addition, as n -> o<, the inequality (4.5.8a) can
be written as (1-p)-(1-exp(-1))erZ 2 0. So, 1, ~> i(1-p)/(1-exp(-1))} 12, as n->o0. The

proof of this lemma is completed.

‘:‘::'"j The definition of k(r) implies that

i limg-»1 kr) (4.5.10)
Mo

S = p + limps (p - exp(-t)*b/{b(1-1)/r + N[ne[(1-1)/r]s[re(L-exp(-1)) - (1-pII/(1-p)]}
®

t:.:-"_;." = +m_

R

t“ In addition,

e

.\J‘

k(ro) = 1. (4.5.10a)

The range ot r such that p < k(r) < 1 is the range of our interest. If k(r) 2 1, then the

x
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screening procedure designed in this and the previous chapter will never be stopped.

(In order to achieve our reliability goal, k(r) was required to be greater than p.)

Lemma 4.5.2:

Assume ro < 1/2. For a fixed and sufficiently large n, the appropriate range of r for us
to use k(r) as our k in this burn-in procedure is from ro to min{r2,1} where 12 is the
largest solution of k(r)=1.

Proof:

First, for a fixed n, let's solve k(r) = 1.
1= p = (p-exp(-0)eb/{ba(L-r)/r + V[(n/(1-p))[(1-r)/r]*[r=(1-exp(-t))-(1-p)]]}
(1-p)+{be(1-1) + V[(ne(1-p))el (1-r)er]e[re(1-exp(-1)-(1-p)]]} = (p-exp(-t))eber
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o
. ‘ bere{1-exp(-0) - (i-p)} = J[(n-(l'p))-[(l-r)-r]‘[r-(1-exp(-t))-(1~p)]]
‘-‘-_::'-:'-E bee[re(1-exp(-1) - (1-p)]2 = (ne(1-p))e[(1-r)r]e[re(1-exp(-1)}-(1-p)] (4.5.11)
,, ‘.-.:-:; b2e[re(1-exp(-1)) - (1-p)] = ne(1-p)e[(1-T)er]
:’-"’ b2 [re(1-exp(-)/1-p) - 1] = ns(r-r2)
" 12 - re[1- b2+(1-exp(-1))/((1-p)*n)] - bZ/n = 0. (4.5.12)
Define
B = 1- b2+(l-exp(-))/((1-p)+n), C = - b/n,
e rl = [B - V(B2 - 4.0)]/2 and 12 = [B + V(B2 - 4:C)}/2.
St
: f::::'f rl and r2 are the two roots of equation (4.5.12).
i \3' It's trivial thatrl <0 < (1-p)/(1-exp(-t)). (4.5.13a)
L)
;-E"_: 12 = {1- b2e(L-exp(-t))/((1-p)en) + V([ 1- b2+(1-exp(-1))/((1-p)em)]2 + 4+b2/n )}/2
“':; = {1- b2e(1-exp(-1)/((1-p)en) + V{[1- (b2/n)2e[(1-exp(-1))/(1-p))-2]]2 + 4+(b2/n)2s
. ‘ ((1-exp(-)A(1-p)-1)} }/2
(
b < {1- bZe(L-exp(-0)/((1-p)en) + {[1- (bHn)((1-exp(-D)/(1-p))-2] + 2+(b2/n):
- V((L-exp(-0)/(1-p)-1)) )12
I = 1- b2+(1-exp(-0))/((1-p)*n) + (b¥n) + (b2n)=N((1-exp(-t))/(1-p)-1)
| = 1- (0%/n)+ ([(1-exp(-)/((1-p) - 1] - V(L-exp(-0)/((1-p)-1]} (4.5.13b)
S < 1 if (1-exp(-t))/((1-p) > 2 when burn-in is required.
The above results implicitly tell us that (4.5.11) has exactly three roots: one is r1, one
is r0 and the last one is r2. For n large enough, we have
o <0< <l (4.5.14)
nE So, this lemma is proved.
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. " N The relation between k(r) and r is sketched in Figure 4 for 10 <r < r2. The
;-:-,, function k(r) has its minimum at rp and k(ro)=k(r2)=1.
v
g
b k=1
)
= k(r)
k=p Lo o,
) \
10 wjm I r2 r=1
- - Figure 4: The relation between k(r) and r.
-
S
- From equation. (4.5.2), the right hand side limit of g'(r) diverges as r approaches ro

le.,
N limit 5 o+ g'(r) =+eo, (4.5.15)

. S0, the slope of k(r) atr = 1o is -oo,

l‘1

oy,

Note:
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If we look at the above figure, we cun see that the behavior of k(r) is VETy strange

LN
M A Y

for rin {ro,r;]. The reason is that we intuitively expect to have small k(r) when r is

i

¥y

small. However, for r in this interval, k(r) grows as r decreases. Using larger k(r)

- o
.
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means that a larger stopping time sequence {Cj(k)} is used. So, this rule tells us to

v
P
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e

eliminate more defective items when we start with fewer for r in this range.
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When the given range for r, say [r,ry], falls in (ro,r2), ie.,
o< <ry <r,
we obtain a conservative rule by taking
k = max {k(r),k(ry)}.
The reason is that the sequence of the stopping times {Ci(k), for i=1,2,...,n-1} is an
increasing function in k. In addition, we observe that k(r0) = 1, but unity is not a

feasible value for k. We shall see in the next section that r must be bounded away from

ro.

- [ R F O T T S e T e T o e O E I Tl
¥ O T T I VI N R P GO Ol G ey L A0

PO gy

PO S O——-




148

4,

)

‘N

' = § 4.6 How close to ro can r be?
{

F The derivation of the formula for k(r) as a function of n in Section 4.4 depends on
”\;ﬁ the assumption that burn-in can not be stopped at any stage j(m) where (j(m)/mH) -> 0
-’.: (1/2< u <1). The derivation also depends on studying the probability of stopping in a
) . neighbourhood of mo = (mo(r,m)) defined by (1.7.3). Thus, if (mo(r,m)/mH) -> 0
R (172 <L < 1), there is an inherent contradiction in the derivation. It is obvious from
_:_,::; (1.7.3) that, as r -> ro*, mo(r,m) -> 0. Hence, we must bound r away from 10 in order
'\ for formula (4.4.3) to be valid. We shall obtain a lower bound r*(n) > ro such that for
Lt. r >r*(n), (4.4.5) is correct. Forro <r < r*(n), some formula for k(r) other than that
” given in this thesis must be used. We shall also find k(r*(n)). This value will serve as
an upper bound on k(r) for r*(n) < r < ry as seen from the discussion of Section 4.5.
__:: First of all, define
& f(r) = (1/(L-1))*(12)((p-exp(-0)/(1-p)),
o £(6) = (r+(1-exp(-0)-(1-p))/(p-exp(-1),

. /O

N e(r) = f(r)sg(r),
i
_." m = ner,
. ~,::_:
e mo(r,k) = (me(1-exp(-t))-n+(1-k))/(k-exp(-1)),
®
3 k() = p + [ro(p-exp(-0)/(1-0)]* {b/[b+V((ner)s(re(1-exp(-1))-(1-p))/[(1-p)*(1-B])])
o (as given in (4.4.11).
~'{::. So, we have
N 1-10 = (p-exp(-0)/(1-exp(-1)),
:::_ o/ (1-r0) = (1-p)/(p-exp(-1)),
o.
=
o
"\-:'v.'
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mo(r,k(r)) ~ n+{g(®) - (t/(1-1))*(IN(nee))e(1+8)}.
Consider the case mo(r,k(r)) = asnP, where a is a constant and 1/2 £ p < 2/3. We have

(n1-P)e(g(r) - (/(1-D)e[(1+g)/(VE(r)-g(r)] (1)} = a, o

(n1P)eg(r)+{ 1 - W/(A-D)[(1+)/(FV2(r)g3(r))}+(1/Nn)) = a. (4.6.1)
If n is large, we can see that
g() ~ A/(pt1A) + B/(nv) (4.6.2)

where A and B are two constaats, and u > 1/3.

Replacing ¢(r) in (4.5.1) by A/(n{12)) + B/(n¥), we have

As(n 1 13)e (1-(/(1-1))* (IND»(1/ABD)o[1 - B/(AsnC-(13)))]3R)-¢en(VE)/n(3/6)} = a,
wkere ¢ is a constan*. (4.6.3)

Since a is finite, w= need the coefficient of the leading term to be zero, i.e.,

1-(r/(1-1) o (1/VE)*(1/AC) = 0 and (4.6.4)
u=1-p, (4.6.5)
- since we need the power of n for the second term, namely 1-p-1/3-u+1/3, equal to O .
Using (4.6.4), we have
(t/(1-1)) 1 2ebe[(1-p)/(p-exp(-1))](1/2e(1/AG2)) = 1,
_ and using (4.6.12), we get
i b/AGR) = 1, or
7 :_, A = b3, (4.6.6)
‘;\ Using g(r) = AAn(/) + B/(n1-P)) in (4.6.1), we obtain
i [As(n1-P-13)+B+{(3/2)+@/(1-0)*(WND«(BAAEDen(-p13) + see} =2,
| .; (3/2)~(/(1-0))«(AND*(B/(AP) ~ a, (4.6.7)
N

We know that (4.6.7) is true if 1/2<p < 2/3.

LR .

Using (4.6.4) to solve (4.6.7), we hive

" L)
.‘. “!‘ o ""l
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B = (2/3)ea. (4.6.8)
Let
r=r06+0. (4.6.9)

We have
g(r) = g(ro +0) = (r0s{ 1-exp(-1))-(1-p))/(p-expi-i)) + O« (1-exp(-0)/(p-exp(-1))

= d+(1-exp(-1))/(p-exp(-t)}

= A/(n(M) + B/(n!P). (4.6.10)
In addtion,
r/(1-r) = (r0+3)/{(1-r0)+(1-(3/(1-r0))]

~ [(r0+0)/(1-10)]+(1+(9/(1-r0))

= [(ro+0d)*(1+(d/(1-10))1/(1-r0) )

= ro/(1-10) + 9/(1-r0)2

= (ro/(1-10))+(1 + &/(1-r0)) and (4.6.11)
V(r/(1-1)) ~ V(ro/(1-10)) + (1/2)*d/(ros(1-r0))

~ V(ro/(1-10))

= VI(1-p)/(p-exp(-1))] (4.6.12)
From (4.6.6), (4.6.8) and (4.6.12), we get
Imin ~ [D@A/(n() + (20a/3)/(n1P)/[(1-p)/(p-exp(-D)], let (4.6.13)
= C/(n13)+D/ (nl-p), for appropriate C and D. (4.6.14)

A effective lower bound of r is obtained:
r¥(n) = 10 + i

= (1-p)(p-exp(-1) + [bOAY (D) + (2+a/3)/(n1P))/

[(1-p)/(p-exp(-1))]. (4.6.15)
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What is k(r*(n))?

K(r*(n)) = p + [rp*+(p-exp(-0)/(1-17)] * {b/[b+((ner*)s(rs(1-exp(-1))-(1-p)) /
[(1-p)e(1- r* ))112})
=+ (P-exp(-1)* {[(1-p)/(p-exp(-1)]+[I*(1-exp(-)2/(p-exp(-1))2] }
b/ (b +V[ne(r0/(1-r0))+(143/(ro+(1-10)))+(1/(1-0))+ (d+(1-exp(-1)))]
+{[(1-p)+[+(1-exp(-)%(p-exp(-t})] }»
1/{1+V[n9+(1+(3/(r0+(1-10))))+(1 -exp(-1))/(b2=(p-exp(-t)))]
~ p +{{(1-p)+[3+(1-exp(-y/(p-exp(-t))] }+
[b(V(p-exp(-))/V(1-exp(-1))«(VC)on()]e[1-D/(2e1:2-))]
~ p + {[(1-p)HCAP)+D/(n}-P)]o(1-exp(-t}¥/(p-exp(-t))] } »
(b [(V(p-exp(-0))/(V(1-exp(-))/[(VC)on(13)])
~ P+ (1-p) *be(V(p-exp(-0)N{(N(1-exp(-)))»(VC)sn(173)) (4.6.16)
This, (4.6.16), is a decreasing function in C, i.e., k(r*(n)) decreases as r*(n)
increases.
So, if r*(n) <r < we can use (4.6.16),
k=k{r*(n) = p + (1-p) sb=(V(p-exp(-1))/{(V(1-exp(-1)))»(VC)*n13)}
=P+ (1-p) *b(V(p-exp(-0))/( (V(1-exp(-1)))*(b/)en(1/3)], (4.6.17)

So, use k=max( k(r*(n)), k(r,) ) where r, is the upper bound of r to obtain a

conservative rule,

e ek 2t o it St Jul--u.u\.k-.-(au PP PR AR
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Sumrnarizing the above discussion, we have the following th<orem,

Theorem 4.6.1:

Suppose 0 = [b2/3)/(n(13)y + (2+a/3)/(n-P)1/[1-0)/(p-exp(- 1))] for some positive
number a and 1/2 < p < 2/3, and 1, is an upp=r bound of r. If r*(n) < r < r, then

k=max(k(r*(n)), k(ry)) will give us a conservative rule, with k(r*(n}) given by

(«+.6.17).
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§4.7 Limiting Probability of Early Stopping.
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Lemma 4.3.2 tells us that, for stopping rv'e (S.3.0), whether P(R(;D,m,n) 2 p) >
. 15 true or not mainly depends on the first several observed failure times of the

d=fective items if k > p and m is large enough. In other words,

[N

}_‘.-‘_"

o limity »eP(R(ED,m) 2 p) >

h depends mainly on

o linsitm5esP(U1:m € C1(k), *+¢, Ujiy S Ci(k) ) for i = 1,2, s, j(m) (4.7.1)
R where j(m)/mi —> 0 and 1/2 < p <1,

Let's evaluate the case j(m) == | first. In §3 8, we studied P(Uj. £Ci(k)) fora
givenm,
limity_seeF (Ut € Cy(k))
=1imity_5ee 1- {1 - (I-exp(-))/[(n-1)+(1-X)+(1-exp(-t))]}m
=limity e, 1- {1- (I/m)+{1-exp(-1))/[(n-1)+(1-k)/m+(1-exp(-t))/m]} M
=1 -exp{- re(1-exp(-))/(1-k) },

where r = limit. so m/nand 0<r< 1,

Define
E\ g(r,k) =1 - exp{-r(1-exp(-t))/(1-k)} (4.7.3)
3»:' We have the following lemma.

\'"‘ Lemma 4.7.1:

::Q',x 1. If bum-inis required ( and n is large enough), then
?w g(r,k) 2 limity s ,P(R(t;D.m,n) = p).

3 2. Ifris fixed, then

,":\{. £(r,K) is an increasing function of ¥ with [1-exp(-re(1-exp(-1))),1] as its range.
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3. Ifkis fixed, then g(r,k) is an increasing function of r.

Note: This is a trivial lemma and the proof of it is omitted.

For j=2,
limity_5ee P(Uj.m < Ci(k) for i=1,2,e¢+,j)
= limity_se {1-(1-Cy(k)))M- - meCy(k)+{1-Ca(k)}m-1

= l-exp{-r*(1-exp(-1))/(1-k) }-{re(1-exp(-))/(1-k} }sexp(-2ere(1-exp(-1))/(1-k) } (4.7.4}

For j=3,

limity-see P( Ujem < Ci(k) for i=1,2,e00,3)

E?if: =limity o1 - (1-C1(K)))M-meC1(k)+ (1-Co(k)} M1 - me(m- e(1-C3())M-2+{Co(k)e
Ck)-(1/2)C1()2)
E*- = 1- exp{-ro(1-exp(-0)/(1-k))- (r=(1-exp(-0)/(1-K) Joexp {-2+r+(1-exp(-0)/(1-k))
1 L(3/2)+ (r+(1-exp(-0)/(1-K)] 2 exp{-3+re(1-exp(-DY(1-K)) (4.7.5)
E
For =4,

limity seo P( Uj:m < Ci(k) for i=1,2,0s,j)

= limity.se0 1 - (1-C1())}MmeCy(k)+{ 1-Co(k}} ™1 - me(m-1)e(1-C3(k))m-
e[ Co(k)C(k)-(1/2)+C (k)2 }-me(m-1)e(m-2)+ { [C1 (k)+Co(k)+C3(k)-
(1/2)Ca(k)*C (k)2] - (1/2)[Cy(k)2C1 (k) - (1/3)C1(k)3])

-
OIS
. ®
e
o
. -
LIMRY
-

O
P

111

oLl
il
:

AP &

= 1 - exp{-re(1-exp(-))/(1-k)}-{r(1-exp(-1))/(1-k) }sexp{ -2er+(1-exp(-1))/(1-k) }-(3/2)e

PR

{re(T-exp(-0))/(1 -k)}2°exp{—3-r-( l-exp(-1))/(1-k)}-(19/6)¢ (r+(1-exp(-1))/(1-k) }3-

@

=

exp{-4 ere(1-2xp(-1))/(1-k) }. (4.7.6)
Define
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A =r(1-exp(-0)/(1-k). (4.7.7)
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Summarizing the above results, we have
A limity_se0 P( Uiy < Cilk) for i=1,2,0+¢)

- — / . U 1 N
ey =1-explAY - Aeexp{ 2:A) - (323 A750xp(-3¢A) - (15/6) Adecap(-deA) - voe

1 - a(1)exp(-A) - a(2)~Asexp(-2A) - a(3)+(3/2)» A2eexp(-3+A) - a(4)+(19/6)sA3e
P 4 .. pr(-&ioA) YY)

A

i-expl-Aj- Amexp(-2eA) - A:-exp(;-'S-A') - A3-exp(-4-A) - e

1-exp(-A)*{1 + Asexp(-A) + (Avexp(-A))2 + (Asexp(-A))3 - es)

=1-exp(-A)/[1 - A-exp(-A)]. (4.7.8)
This is an upper bound of limity . 5P(R(t;D,m,n) = p) if we allow this burn-in
-.‘\ pracess to stop at the very beginning. On the other hand, we corjecture that we should
&
. be able to find a coustant 1 < ¢ < o such that

a(i) S ¢t fori =1,2,3,0, mH with 1/2 < < 1 and
limity. 5 0oP(Uj.m < Cj(k) for i=7 2,eee mH)

> 1 - goexp(-A)/[1- geAvexp(-A)]. 4.7.%)

"l "‘:’L“L"‘.

This is a lower bound ot limity_seoP(Uj:m < Ci(k) for i=1,2,eee,mH).

Cn e

If the right hand side of inequality (4.7.9) is positive for some k in 70,1), we skould

r,
A N

‘l,‘. .

A ' o
/R .

LN be able to find a suitable k, say k*, such that
1 ./'{ . .
N the right hand side of (4.7.8) 2 a. (4.7.10)
R
f:: In this case, it is clear that

limitn.5e0 P(Uj: < Cj(k) for i=1,2,00 j+1)

r'wa:""T'c..?'.??l’l

= limity.500P(Uj;y<Ci(k) for i=1,2,0e0,j) -

R a(j) {re(1-exp(-/(1-k) - Leexp{-jore(1-exp(-0)) /(1K) }, (4.7.11)
'}

5 And, we can conclude that
o 2. 20 a()* {re(1-exp(-t)/(1-k) }i-Leexp {-jere(1-exp(-)) /(1-K)} (4.7.12)
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is close to 0 for moderate d. That is, for any error bound e, there exists a moderate d

such that

limity-see P(Uj:m < Cj(k) for i=1,2,%¢+,3)

- limity-see P(Uj:py < Ci(k) for i=1,2,0eemM) < e (4.7.13)
In addition, if k > p, we'll have

limity_se0 P(Uj:m < Ci(k) for i=1,2,¢+,0)

2 limity.seo P(Uj:m < Cj(k) for i=1.2,+e¢,mH)

= limi*._se0 PR(t;D,m,n) 2 p) (4.7.14)

The following argument shows k > p when k is derived from early failures. This
tells us that the derivation of k in this section is not close to p no matter how large n is,
i.c., the stopping rule obtairied by using this k will be too conservative. From (4.7.8),
the upper bound on the confidence is given by
Ub(A‘) = (1-exp(-A))/(1-A+exp(-A)) where A is given by (4.7.7).
ivote that the first derivative of Ub(A) is
UY'(A) = {(exp(-A))*(1-Asexp(-A)) + (1-exp(-A))*(exp(-A))*(1-A) }/(1-Asexp(-A))2

= {(exp(-A))*[1-Aexp(-A) + 1-expl-A)-A + Asexp(-A)]}/(1-Arexp(-A))2

= {(exp(-A)}*12 - (A+exp(-A) )] }/(1-Avexp(-A))2. (4.7.15)
(d/dAY) A+exp(-A)] = 1 - exp(-A).

So, A+exp(-A) is an ircreasing function in A. In addition,

UP'(A) >0 for A < A* where A*+exp(-A*) =2 (A* < 2 but near 2), and

UP(AY <0 for A > A%, (4.7.16)
If A < 1, then Asexp(-A) < exp{-A) or 1 - Asexp(-A) > 1-exp(-A). So,

Ub(A) < LifA <1, (4.7.17)

Furthermore,

. e 7w

s
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ub(1) = 1. (4.7.18)
Hence, there is a solution Al < 1 of UP(A) = a. (4.7.19)
Also a solution A2 > 2 of Ub(A) =« (4.7.20)
In the range of interest, r > (1-p)/(1-exp(-t)) or

A > (1-p)/(1-k). (4.7.21)
Note: k2p<=>Az1l. 4.7.22)
So only solution A2 > 2 of Ub(AZ) = @ is of interest.

For any r in the range of interest r > r0, define r = esro with ¢ > 1, We have

1 -k = (@/A2)(1-exp(-1)) = es(1-p)/A2. (4.7.23)

So, k decreases as r (or e) increases and a conservative k is that for the minimum .
Suppose the minimum r is near ro and i.e., € ~ 1, then from (4.7.22), we see that k >
p. If P(R(t;D,m,n) > p) increases witn k, then we need k > k' where k' is given by

(4.7.23), and k' > p when e is less then A2,
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§4.8 Use k = p+ O(1/vn)

Let k1 be the "k" obtained froma (4.4.5) and k2 be the "k" derived by equating

(4.7.12) to «a, if a solution exists. The comparison about the performances of the

burn-in processes based on kl and k2 is given and k1 is recommended as the better

choice.

Let's consider the case that k2 is used. From Section 4.7, we know that k2 > p.
In this case, we will have about 100¢(1-0t)% chance of having a lot with most of its
defective itzms still remaining after burn-in and have abcut 100°0% chance of having a
lot with many fewer defective items than (m-mo). So, if k2 is used, the quality of any
lot after burn-in has two extremes: this lot can be very bad with most of its defective
items still sitting there and the duration of this bum-in is very short; or this lot can be
too good with many fewer defective items in it and with its dura.tion of burning-in, -
In(1-s4(k2)), longer than what is required. Although we might still achieve our

reliability goal if k2 is used, the over all quality of the lots after burning-in is not

\ i » .
. i
N St
e W N

P

consistent and the duration of burning-in would t2nd to longer than it truly needs to be,

i.e., (sg(k2) > so(p) if k2 > p.
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If k1 is used, burn-in will be stopped approximately when mo(k 1) defective items

are removed from a burn-in lot. The quality of each after-burn-in lot is very similar,

For a lot put on burn-in, the number of the defective items remaining in it is close to
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m-me(x) after burning-in. In this case, each buim-in process also tends to stop at the
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Based on the consideration about the consistency of the quality of each after-bum-
in lot and the possible duration of burn-in, the k derived by using (4.4.5) is

recommended.
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v -.; NUMERICAL RESULTS, SIMULATIONS, AND COMPARISONS
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’
' .-::.-
o §5.1 Introduction
4' l‘ll "
'h'\"-‘
:;-'.:‘_'- In this chapter, the achieved confidence level and the expected duration are
;';;;L computed (Procedure 0 and Procedure 1) or simulated (Procedure 1I) for each
o
@ procedure. The same true m and a set of assumed "m"s are used for each procedure,
WA
\d qh‘-. v . . -
.;3._ too. So, we can see how sensitive the confidence and the duration of burn-in are to the
v RN
-{“::\ assumed value of m. In addition, we can make comparisons among these procedures.
DN
‘ n' "
K .
;- For cach procedure, two sets of (n,m) values are used. One is for a small lot where
| .
o n equals 400 and m ranges from 32 to 352 in steps of 32, and the other one is for a
) large lot sizz where n equals 4000 and m ranges from 320 to 3520 in steps of 320. In
W
~ W . [}
~ i this chapter, we use p=.99, 0=.99, and 1-exp(-1)=.99, i.e., t=4.61 for all the
F N
oy . . , . . .
'\-:.: aumencal computations and the simulation runs. For Procedure 11, 2000 simulations
:, were run. We can compare the results in each table, and see the differences among
b
”C:, these procedures and see the differences in each individual procedure when different
:t-“"'-
».::‘\-: (assumed or true) numbers of defective items, m, or burn-in lot size, n, are used.
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§ 5.2 The Numerical Results for Procedure 0 ‘

The tables in this section show the numerical evaluation of the performance of
Procedure 0. Tables 1 to 5 tell us the performance of Procedure 0 when the lot size
n=400 with the assumed (or true) number of defective items m ranging from 64 to 352.

Tables 6 to 10 tell us the performance of this procedure when the lot size n is 4000 with

m ranging from 640 to 3520.

Notations used in tables:

n: the burn-in lot size.

m: the true number of the defective items in a burn-in lot.

mest = met; the assumed number of the defective items in this burn-in lot.

m0 = mo: this number of defective items must be eliminated through burn-in to
achieve our reliability goal.

mest0) = mesto: this is the number of defective items which we intend to eliminate
through burn-in to achieve our reliability goal when the assumed m is mest.

t: this is the required after burn-in service period.

t-delta: this is the stopping time of Procedure ). It is denoted as A in Chapter 0.

confidence: this is the probability of achieving R(t;D,m,n)2p, P(R(t;D,m,n)=p),

when this stopping rule uses the stopping time whick is derived by an assumed

value of m.

If we look at Table 1 to Table 5, we can see that 'confidence’ increases steadily as
the assumed value of m increases. If m is under estimated, we will not be able to

achieve R(t:D.m,n)2p with the desired probability ¢, i.e. we will be unable to achicve
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our reliability goal. The chance of achieving our reliability goal is getting worse if the
assumed value of m is farther below the true value of m. If m is over estimated, the

quality of a lot after bum-in is higher than the required quality with a longer duration of

burn-in.

If we compute the difference m - mo, we have that m-mo is a decreasing function
of m. This tells us that fewer defective items can remain after burn-in if we have more
defective items in a given burn-in lot. Here, mest-m*sty = G if m®S! is greater than or
equal to 320. The difference m®t-mes' has a great influence on the stopping times, If
we check the column of t-delta, we can see that t-delta increases steadily as the assumed
value, m@St increases and has a jump when the value of the difference mest-mestp
changes, for example, when mest goes from 96 to 128
mest-mesty changes from three to two. In addition, the stopping time t-delia has a great

jump from me$=298 to m*®s'=320, The reason for this jump is that the difference mest-

m®sto changes from 1 to 0.

If we look at Table 6 to Table 10 (the large lot size, n=4000, case), we can see
results similar to those described in the previous paragraph. In addition to these, we can
sce another two features in these tables. The first one is that 'confidence’, the chance
for us to achieve R(t;D,m,n)2p, is very sensitive to the assumed value of m if it is
under estimated. The second one is that t-delta is significantly smaller than the t-delta in
the first five tables. This tells us the fact that the duration of burn-in will be reduced if

the 1ot size is increased tor a fixed ratio (m/n).
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Table 1:

n=400,

m=64,

32 29 3.62492 0.908605

64 61 4.33606 0.590000

96 93 4.74737 0.997622

128 126 5.67589 0.999926

160 158  5.90027 0.999969

192 190  6.08341 0.999985

224 223 7.31654 1.000000

257 255  7.45031 1.000000

288 287  7.56828 1.000000

320 320 10.36849 1.000000

352 357 tpL.4a6379 1.0000C0
s

:_{ Table 2: n=400, m=128,
» "
“-'.

A v{":«' ~ngt mog - >

e n 2 32 29 3.62492 0,333892

in 64 6l 4.33605 0.764306

i 95 93 4.74737 0.899116

3 128 126 5.6758% 0.990200

) 160 158  5.90027 0.994565

. 192 190  6.08341 0.996727

' 224 223 7.31654 0.999906

3 256 235  7.4503. G.$99937

288 287  7.56828 ¢.999955

320 320 10.3684% 1,000,060

322 . 30¢ 10.46379 .1.000000

mo=61

—oast.restQ t-delta confidepre

mo=126

Table 3: n=400, m=12¢2, mo=1%0

Loe ~dela  confidence

32 29 3.6249 0.111856

64 €1 4.33606 0.539%644¢

96 43 4.74157 0.7666873

128 126 5.67589 0.971015%

1€0 158 5.80027 0.983743

192 190 6.08341 0,990000

n24 223 7.31654 0.999690

<586 235 7.45031 0.999730

288 287 7.56828 0.999851

ize 320 10.36849 1.000000

iz _J352..10,46379 | 1,000000
]
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Table 4: n=400, m=256, mo=255
32 29 3.624927 0.007949
64 61 4.33606 0.150741
96 93  4.74737 0.348278
128 126 5.67589 0,780702
160 158  5.90027 0,843953
192 190  6.08341 0.883566
224 223 7.31654 0.987113
256 255  7,45031 0.990000
288 287  7.56828 0.992016
320 320 10,36849 0,999968
s Table §: n=400, m=320, mo=320
r':.'nl'- ~e e - + -
Lt:: 32 29 3.62492 0.000176
Eu“l 64 61  4,33606 0.014760
i;* 96 93 4,74737 0.061547
e 128 126  5.67589 0,333237
F}f‘ 160 158  5.90027 0.415785
i 192 190 6,08341 0.481642
r 224 223 7.31654 0.808402
v 256 255  7,45031 0.830226
288 287 7.56828 .0,847599
320 320 10.36849 0,990000
1= T, 70 -
L
-j?;
i@,
Ko
>
.. "'
L
r-."
"
e
"-‘
H . .
N
o
,:.‘J' L L W L L W e P e e W MM e e Y T T e Ty e T e T e e T e T T T T AT SRR R PRI A
T AT S e e N T e N I R N LA



i m e W o MMM ¥ WA M TLEL ORI oM=L W we W W om W s oscees o s s -

«

A
%
h:
s
e
= 165
Q‘d Table 6: n=4000, m=640, mo=606
oot omestC  t-delfa confidence
~ 32¢  2B3  2,52456 0.005219
i 640 606  3.32923 0.930000
e 960 929  3,54950 ©.999999
o 1280 1253 4.30731 1.000000
Y 1600 1576 4.67666 1.000000
" 1920 1829  5,02625 1.000000
2240 2223  5.44912 1.000000
2560 2546  5,83462 1.000000

2880 2869 6§,27297 1,000000
3260 3192 6.81531 1.000000
ac20 35le 2.910967 1.000000

Table 7: n=4000, m=1280, mo=1253

et Mmoot - - 1 o

320 283 2,52456 0.000000
640 606 3.32923 0,001586
960 929 3.84950 0.53:488
1280 1253 4.30731 0.990000
1600 1576 4,67666 0,999955
1920 1899 5.02625 1.000000
2240 2223 5.44912 1,000000
2560 2546 5.83469 1.000000
2880 2869 6,2729%7 1.000000
3200 3192 6.81531 1.000000
~252Q 301¢ 7,91967  1.000000

Table 3: n=4000, m=1920, mo=1899

~oest mestQ  t-delta . confidence

320 283 2,52456 0.,0C0000

€40 606 3,32923 0,000000

960 929 3.84950 0.000423
1280 1253 4.30731 0.195984
1600 1576 4.67666 0,808547
1920 1899 5.02625 0.990000
2240 2223 5.,44912 0.999950
2560 2546 5,83469 1.000000
2880 2869 6.27297 1.000000
3200 3192 6.81531 1.000000
3520 3s51¢ 7.91967 1,CG0000
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Table 9: n=4000, m=2560, mo=2546

cest rest( tedelta confidence

370 283 2.52456 0.,000000
640 60€ 3.32%23 0,000:00
9€2 929 3.84950 0.000Cy0
1280 1253 4.,30721 0.000051
1600 1576 4.67666 0.020948
1920 1899 5.02625 0.296151

22490 2223 5.44912 ©,.B853912
2560 2548 5.83469 0.990000
2880 2869 6,27297 0.999846
32¢¢ 3192 6.81531 1.000000
3523 3816 7,81967 1.,000C00

Table 10: n=4000, m=3209, mo=3192

_cest cestQ  t-delta, confidence
320 283  2.52456 0,000000
640 €06  3.32923 0.000000
360 9.9  3.8B4950 0.00000C

1280 1253  4.30731 0.000000
16C0 1576 4.67666 0.000002
1920 1899 5.02625 0,001074
22640 2223 5.44912 0.069317
2560 2546  5.83469 0.409274
2880 2869  6.27°97 0.843571
3200 3192  6.81531 0,990000
_3220 3016 7,91967 0,90999¢
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§ 5.3 The Numerical Results for Procecdure I

We numerically evaluate the performance of Procedure I in this section. Similarly
to the previous section, the first five tables evaluate the performance of this procedure
when the lot size is smiall, i.e., n=40C. The last table tells us the performance of this
procedure when the lot size is large. As mentioned in Section 2.3, we use three
eguations, (2.3.3), (2.3.4) and (2.2.5), to compute upper bounds t*, for the waiting
times between successive failures, so the tables in this section have all these three t*s

computed. The three corresponding expected durations of burn-in time are also

computed here.

Notations used in these tables:

(The notations which were defined in §5.2 will not be given here.)

t*(3): The upper bound, which is calculated by using equation (2.3.3), for the waiting
times between successive failures.

t*(4): The upper bound, which is calculated by using equation (2.3.4), for the waiting
times between successive failures.

t*(5): The upper bound, which is calculated by using equation (2.3.5), for the waiung
imes between successive failures.

ED(3): The expected duration of burn-in of Procedure I when upper bound t*(3) is
used.

ED(4): The expected duration of burn-in of Procedure I when upper bound t*(4) is
used.

ED(5): The expected duration of burn-in of Procedure I when upper bound t*(5) is

v

used.
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P(R(3)): The probability of achieving R(1,D,m,r:) 2 p when upper bound t*(3) is
used.
P(R(4)): The probability of achieving R(t,D,m,n) 2 p when upper bound t*(4} is
used.
P(R(5)): The probability of achieving R(t,D,m,n) 2 p when upper bound t*(5) is

used.

For th= small lot case, Tavle 11 to Table 15, we can see that t*s and EDs change
only when mest-mes is changed. There is no significant difference among t*(3), t*(4)

and t*(5), nor among the corresponding expected durations. This tells us that we can

P use the most simplified equation to compute t* without losing too much. If n and the
woa
o true m are fixed, then the probability of achieving R(t,D,m,n) 2 p increascs as mest-
\‘---h
e

me-t0 decreases and this probability does not have any change when mest increases but
met-mesly semains constant. If the assumed m is less than the true m and mest-mesY is
the same as m-mo, ther we will be able to achieve our reliability, P(R(t,D,m,n)2p)2 .

f the assumed n. is less than the true m and m®$-m*s'o is larger than m-mo, then this

reliability goal is not achievable. However, the drop-off in confidence as mest falls

£ . . . .
:Z:.-: below m is not nearly as great as with Procedure 0. If the value of m is over-estimated,
:::-:.; the qual‘ty of an after-burn-in lot will be higher than what is required and the duration

of burn-in will also be longer than what is needed.

For the large lots, n=4000, the numerical results tell us the same properties of this

NI MO A
l' £, € 1 'l',", :..,‘
R |
Tom e R

procedure as the small lot size case tells us. Similarly to the large lot case of Procedure
0. the expected duration of burn-in is significantly reduced if the lot size is increased

from 400 to 4090 when the assumed value of m is not too close to n. (The
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Table 11: n= 400, m = 64, mo=61

cegh cesed Le(3) 0 rr(d) tr(8) =D o4 ED(S)  D(X(J)) P(R{4}) P(R(S}))
32 29 1.,2364 1.2370 1.237 5.1762 5.1771 5.1771 ,9900 .99300 .9900
64 61 1.2364 1.2370 1.237 5.1762 5.1771 5,1771 ,9900 .9900 .9900
95 93 1.2364 1.2370 1,237 5.1762 5.1771 5.,1771 .9900 .9900 . 9900

128 126 1.6088 1.6094 1.609 5.,7623 5,7630 5.7630 .94979 ,9980 . 9980
160 158 1.6089 1,6094 1.609 5,7623 5.7630 5.7630 ,9979 ,9980 . 9980
192 190 1,6089 1.6094 1.609 35,7623 5.7630 5.7630 .9979 .9980 .9980
224 223 2.382% 2,3525 2.352 6.7626 6,7631 6.7631 L9999 ,5399 . 9999
256 255 2,3521 2,355 2.352 6.7626 6.7631 €.7631 .9999 ,9999 .9999
288 287 2.3521 2.3525 2.352 6.7€26 6.7631 6.7631 .9999 ,9999 . 9999
327 3290 4,.6150 4.6151 4,615 9.3031 9.3032 9.3032 1.0C0 1,00¢C 1.000
Table 12: n=400, m=128, mo=126

oesn . >egts w*x(3) {4 L*{5) FDi3) ED(4) EDig P(R{3Y) P{R!4)) P(R(5})

32 29 1,2364 1.2370 1.237 5.865 5.8684 5.8664 .9557 ,9658 . 9658
64 61 1.2364 1.2370 1.237 5.865 5.8664 5,8664 9657 .9658 .9658

96 93 1,2364 11,2370 1.237 5.865 5.,8664 5.8664 ,9657 ,9658 .9658
128 128 1.6089 1.6094 1./09

L)
_“- 2 6.451 6.4523 6.4523 ,9900 .9900 . 9900
' 1e0 158 1.6089 1.6094 1.609 6.451 6.4523 6.4523 ,9200 ,9900 .9%00
E- : 182 199 1.6089 1.60%94 1,609 6.451 6.4523 6.4523 ,9%00 ,9900 .9900
= 224 223 2.3521 2.3525 2,352 7.451 7.4524 7.4524 ,9990 .9990 . 9990
}:': 256 255 2.3521 2.35?5 2.352 7.451 7.4524 7.4524 .99%0 .9990 . 9990
: 288 287 2.3521 2.3525 2.352 7.451 7.4524  7.4524 .3%90 ,9990 . 9990
320 320 4.6150 4.6151 4.615 9,992 9.9925 9.9925 .9999 ,9999 .9999
io2  3%2 4.€35¢C 44,6101 4,610 9,992 95,9925 9,9925 ,9999 L9999 L9999

Table 13: n=400, m=192, mo=190

SRs. Testd Lr(3) L*(4) L*(3)__ED(X)  ED(4) ED(D) P(R(3Y) P(R{4)} P(R(S5))

32 29 1.2364 1.2370 1.237 6,269 €6,2705 6.2705 ,9657 ,9558 .8658
64 61 1,2364 1.2370 1.237 6.269 6.2705 6.2705 .9657 3658 . 9658 :
9¢ 93 1.2364 11,2370 1.237 6.269 6.2705 6.2705 ,9657 .9658 .94658
128 126 1.6089 1.6094 1.609 6,855 6.8564 6.8564 .9900 .99300 .9%00 i
162 158 1,6089 11,6094 1.609 6.855 6.8564 6.8564 .9900 ,8900 .9%00
192 190 1.6089 1.60949 1.609 6.855 6.8564 6.8564 ,9900 .9300 . 9300
224 223 2,3521 2.3525 2.352 7.856 7.8565> 7.8565 ,9990 ,9990 . 9990
2536 235 2.3521 2.3525 2.352 7.856 7.8565 7.8565 ,9990 ,9990 . 9890
288 287 2,3521 2.,352% 2.352 7.856 7.8565 7 8363 ,9990 ,9990 . 9990
32¢ 320 4.615C 4,6151 4,615 10.396 10.3%966 10.3966 .9999 ,9999 . 9999
352 22 . 4L,4838C 4.e1b1 4,615 10,596 10,.209€5 10,3968 9999 ,93999 9999
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Table 14: n=400, m=25%6, mo=255
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AN o W A
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Fom dm rem A.k.hk. RS A A Ay

s

A ZQsy Zesgt” —*(3) Lr{4y *{s) ED(3) Enfa) ED(D) PIR(3)) P(R(4}} P(R(58)
. 3229 1.2364 1.2370 1.237 6.556 6.5576 6.5576 .8843 8844 .8644
- 64 61 1.2264 1.2370 1,237 6.556 6.5576 66,5576 .8843 ,8B44 .8844
:: 96 93 1.2364 1.2370 1,237 6.556 6.5576 6,5576 .8843 .8844 .B844
- 128 126 1.6089 1.6094 1.609 7.142 7.143% 7,1435 ,9503 .9504 . 9504
L ° 160 158 1.6089 1.6094 1.609 7,142 7.1435 7.1435 ,9503 ,9504 . 9504
192 190 1,6089 1.6094 1.609 7,142 7.1435 7.1435 ,9503 .9504 . 9504
224 223 2.3521 2.3525 2.352 8.143 8.1436 B.1436 .9900 .9300 . 9900
256 255 2.3521 2.3%2% 2,352 B8.143 8.1436¢ B.1436 .9900 .93Q0 . 9900
288 287 2.3521 2.3525 2.352 5.143 8.1436 8.1436 ,9900 .93C0 .9%00
32 322 4.615C 4.6151 4.515 10.683 10.6837 10.6837 .9999 99499 .9999
As2 332 £.0300 4.,6151 4,615 10.683 10,6837 10,6837 .9999 _ ,95%99 9999
Table 15: n=4€0, m=320, mo=320
g Zest rmegt) % (3) (4 L*(5) 50(3) EQ(4) ED(3) P(R(3)) P(R{4)) P(R{5))
32 29 1.2364 11,2370 1,237 6,7794 6.7803 6,7803 ,€275 .62717 . 62177
| 64 61 1.2364 1.2370 1.237 6.7794 6.7803 6.7803 L6275 ,6277 . 6277
\ 96 93 1.2364 1.2370 1.237 6.7794 6.7603 6,7803 .6275 ,6277 . 6217
128 1:ze 1.6089 1.6094 1.609 7.3655 7,3662 7.3662 .7601 ,7603 .7603
160 158 1.6089 1.6094 1.609 7.3655 7.3662 71.3662 L7601 7803 .7603
192 140 1.6089 1.60%4 1,609 7.3655 7.3662 7.3662 .7601 .7603 L7603
224 223 2.3521 2.3525 2,352 8.3658 B8.3663 8.3663 .8957 .8954 . 8958
256 258 2.3521 2.3525 2.352 8.3658 B8,3663 8.3663 .B957 .B958 . 8958
288 287 2.3521 2.3525 2.352 8.3658 B8,3663 8.3663 . 8957 . 8958 .8958
320 320 4.6150 4.6151 4.615 10.9063 10,9064 10.9064 .9900 ,9900 . 9900
222 232 . 4,650 4.6151 4,615 10 2063 10,9064 10,9064 _ , 9900 99¢0 89300
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Table 16: n=4000, m=640, mo=606
SCSt  _mesTto te(a) Lxi4) £ *(S) __ED(3) ED{2) ED(5) _ P(R:3)) P(R(4)) PIRIS}]
120 283 0.1699 0.1760 0.1700 3.9356 3.9365 3.9365 ,9834 . 9834 . 9834
643 6C6 0.1825 0.1827 0.1827 4.0441 4,0451 4.3451 .9900 .9900 .9900
960 929 0.1974 0.1976 0.1976 4.1540 4.1650 4.1650 .9944 .9944 .5944
1280 1253 90,2219 0.,2221 0.2221 4.3480 4.3470 4.3470 .0978 .9978 . 9978
1650 15376 0.2453 10,2452 0.2452 4.5G38 4,5048 4.5045 .9331 .999] . 9991
\ 1820 1899 0.2740 0,2742 0.2742 4.6857 4.68B67 4.6867 ,9997 . 9997 . 9997
g, v, 2243 2223 0.3266 0,3268 0.3263 4,9798 4,9808 4.9808 .9999  .9999 . 9999
”:\ﬂ- 2562 2546 0.3830 0.3833 0,3833 5.2558 5,2569 5 2569 .0999 L3999 . 9999
SN 2830 2869 0.4657 0.4660 0.4660 5.6038 5.6047 5.6049 1,000 1.006  1.000
¢:¢: 3200 3192 ©.5997 0.€001 0.6001 6.0661 6.0671 6.0671 1.080 1.009 1.600
. | P AS2C 3336 1.9Q109 1.7°114 1.C0i14 7.9 2.0616 1,000 1.000 1,200
- ',.\__
Wi
. ; Table 17: n=4000, m=1280, mo=1253
mest _mest0 __1*(3) t* (4 t*(5) ED(3) ED(4) ED(5) P(R(3)) P(R(4)) P(R(5))
320 283 0.1699 0.1700 0©0,1700 4.6283 4.6252 4.6292 .9464 .9466 . 9466
642 606 0.1825 ©0.1827 0.1827 4,7369 4.7378 4.7378 .9645 L9646 . 9646
360 929 0.1974 0.1976 0.1976 4.8568 4.8577 4.8577 .0780 .9781 .9781
1253 6.2219 0.2221 0.2221 5.0387 5.0397 5.0397 .9900 L9900 . 9900
1576 0.2450 0.2452 0.2452 5.1965 5.1975 5.1975 .9951 .9952 .9982
1899 0.2740 10,2742 0.2742 5.3784 5.3795 5.3795 .9930 L9960 .9980
2223 0.3266 0.3268 0.3268 5.6725 5.6736 5.6736 .999¢ .9996 . 9996
2546 0.3830 0.3833 C.3833 5.9486 5.9497 5.9497 .g999 .9999 .9999
2863  0.4657 0,4660 0.4660 6.2966 €.2977 6.2977 .9999 .99499 .9999
‘ 3192 0.5997 0,6001 0,6001 6.7588 6.7539 5.7599 1.000 1,000 1.000
A J316 1.0179 11,0114 1.0114 17,7534 7,7543 _7,7543 1,060 1.5C0 1.000
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§ 5.4 The Numerical and Simulation Results for Procedure II

The performance of Procedure II is evaluated by simulation. Before this evaluation
can be done, we must decide which k value should be used. In Section 4.4, a
computation scheme to find a suitable value for k is derived by using equation (4.4.10),
If the lot size is large, i.e., n=4000, this computation scheme gives us an excellent
value of k (Table 24 and Table 25). However, the simulation study tells us that the
value of k obtained by using Equation (4.4.10) is not applicable when the lot size, n, is

small, i.e., n=400. In this case, the value of k calculated by using Equation (4.4.10) is

above 1 very often.

a
)

N T
» AN -

When the lot size is small, the value of k is obtained by using a simulation. We

[
v.
L
v

pick a number between p and 1, and run a simulation to see how well this k performs,
for a given m. If our reliability goai P(R(t;D,m,n)2p) 2 o is ensured by using this k,
then we'll check whether the simulated probability value is close to a or not. If the
simulated probability is not too far away from o, then we can use this k. Otherwise, we
need to pick a smaller k (Zp). On the other hand, if our simulated probability is smaller
than @, then pick a larger k and do this simulation again, that is: repeat this procedure

until an acceptable k is obtained. Table 18 to Table 24 tell us how k is obtained when

the lot size n is 400.

Before we have any further discussiens in this chapter, let's define the notation
used in this section. (The notation defined in the previous two sections will not be

repeated here.)
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expected-dt: This is the expected duration of burn-in when this bum-in procedure is

"

used.

L 4
(]

k(mest): The value of k derived from Equation (4.4.10) with the assumed value of m

LA

Nt~ A0

being mest,

-

For the small lot size cuse, we vary the value of k from .9940 to .9995, i.e.,
k=.9940 is used in Table 18, k=.9950 is used for Table 19, ..., k=.9995 is used for

Table 24. When the lot size is 400 and the wrue number of the defective items is 64, by

b TS
DA Ty

comparing the "confidence” column of Tables 18 to 24, we can see that our reliability

rrnnT

goal is achieved, if k=.996 (Table 20) is used. Similarly, when the lot size is 400 and

al

¥
|

T YL
a - . . LI

the true number of the defective items is 128, comparing the "confidence" column of
Tables 18 to 24, we can see that our reliability goal is achieved, if k=998 (Table 22) is

used. So, for the case of small lot size burn-in, we can use this approach to obtain the

appropriate k.

-
L3

%
»

Since we never krow the true value of m, we design Procedure 2 by using the k
corresponding to our estimated m. For instance, if we guess m to be 64, we use
k=0.996 which was pointed out above as the appropriate choice in that case. Table 20
can now be read as showing how confidence and expected duration vary with different
values of the true m when the estimated m is fixed at 64 (the only effect meSt has is in
determining the value of k to use). This is different from the previous sections where
each wble showed confidence and expected duration as m®** varied for 2 fixed value of
m. For instance, when met = 64, Table 20 shows that when m=352 (so that we have a
majior underestimate), the confidence is still 0.987. Table 20 also shows that if the true

m is 32, the achieved confidence is 0.984 so that, for this procedure, overestimating m
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does not guarantee the confidence requirement. A look at Tables 18 to 24 suggests that

'-ﬂ"’

oy 6%

the confidence of Procedure II is less sensitive than that of the other two to mis-
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specification of m.
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For the large lot size case, the value of k can be derived from Eouation (4.4.10).
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Table 25 tells us a simulation result for the case: m=640, n=4000, p=.99, 1-exn(t)

S

=.99, 0=.99 when the assumed value of m, m®s!, is ranging from 370 to 3520 and the
number of simulation runs is 2000. The expected duration of burn-in given in this table
shows that it, expected-dt, increases as the assumed value of m is increases but it is not
very significant ‘cr z very wide range of m (by comparing to the other procedures).
Furthermore, the values in the "confidence" column or "k(m®st)" column preserves the
monoione property: their values increase as m increases. But, these are not always
monoctone. For "confidence", if we let the increment between the consecutive mest's be
small enough, ihen we will be able to see that "confidence" is not a monotone function
in m. This numerical result is not shown here. For k(m®st), we can see from Figure 4
of Section 4.6 that k(m) is a U-shaped functicn of r (or m). In addition, all the values
in the "confidence" column are aboye the required lower bound o, i.e., our reliability

goal is always ensured in this case: large lot size burn-in.

Table 26 shows a simulaticn result for the case n=40C0, p=.99, 1-exp(-t)=99,
0=.99 when the assumed value of m is the same as the wue value of m, where m venes
from 320 to 3520. The numoer of situulction runs is 2000. We can see that the values
in "confidence” column have a very little variation as in Table 24, In addition, all of

these values in "confidence" column are above 0.99, so k(m®st) obtained here is

couservative. Furthermore, the value in the "expected-dt"” column increascs as m
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increases, too, An application of this table is that, if an upper bound of min a burn-in

o L

2.7
o,

lot is known, it can be used to figure out the upper bound of the duration of burn-in

2y

hYy

which might be required to achieve the desired confidence For example, if the upper

R
"
1%
)

bound of m is 1600, n is 4000 and the desired confidence is 0.99, then the upper

bound of the expected duration of burn-in will be around 4.81.
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‘Tabie 18: k=0.9940, n=400

oo ¢ cgoflidence expected-dt
32 29 0.917499900 2.68B606739
64 61 0.,948999941 3.461193562
36 93 0.960499883 3,960860491

128 126 0.916499913 4.357280701

160 158 0,936499894 4.704833984
192 190 0.,964999914 5,029990196
224 223 0.900999924 5.351178169
756 255 £.,946999967 5,686598301
288 287 0.975999951 6.0566973269
3228 320 ©,916499972 6.502041340
382 3222 2,063990027 7.116272872
fumber of simulation runs=2C00

Table 193 k=0.9950, n=400

o0 ooflider~ce cxpected-dr

29 0.952999890

32 2.872345686

64 61 0,971499392C 13.644049644

96 93 0,9779998€6 4.144165039
128 126 0,948499918 4.540705204
JEC 158 0.959499955 4.88B3231784
192 199 0.979999909 5,213341713
224 223 0.924999952 5.534407616
236 255 0,963999927 5,863949341
288 287 0.983999908 €.240071774
20 320 02,.939999038 £.£85378551

rurper of simulation runs=2000

Table 20: k=0.9960, n=400

.

- -2 _confidernce expacted-dr
22 29 0.984493872 3,230851650
2] 61 0.,992499948 4,001834869
36 93 0.995499309 4.502047062
i28 126 0.977999926 4.898869514
162 158 €.986999869 5.246265888
192 190 £.990999937 5.571498394
224 223 0.973999916 5.,892687798
236 253 0.98449%9011 6.2279313857
283 287 0,990999937 6.5982823237
320 327 0.966999894B 7.043487072

d32  3ZI2 2.,986992929  7.637604694
nurber of simulation runs=2000
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o Table 21; k=0.9970, n=400
v “»
! -0 copfidence  expected-dt
S 32 2% 0.99%29%9911 3.385284662
. ;Q 65 61 0,995999932 4,156266212
b %6 33 0.997399907 4.657020092
o " 128 126  (.986999929 5,053611755
J 160 158  0.991999924 5,400946140
192 130  0.993499935 5.725118088
224 223 0.985499918 6.047466278
. 256 255  0.990499914 6.382554531
e 288 287  0,994499922 6.753048420
) 320 323 0.975999951 7.198336124
252 352 0 0,592999937  7.812598705
o numper of simulation runs=2000
o Table 22: k=0.9980, n=400
': o0 confidence  expected-dt
AN 32 29 0.997993907 3.79247784s6
"~ 65 61 0.998999894 4.562776566
96 93 0.999499917 5.063402653
128 126 0.996499856 5,460057259
160 158 0,996999919 5.807489395
192 192 0.9999992%40 6.132760525
224 223 0.995499909 6.4553858852
256 255 0.996999919 6.788960457
, 288 287 0,998499330 7,159490585
( 323 320 0.987999916 7.604671001
- 352 382 ©,99649945¢ R 21a2eenin
-: - number of simulation runs=2000
R
S0 Table 23: k=0.9990, n=400
ha ~4_gonfidonma gxpected-dr
32 29 0.999990940 4.486933231
€4 61 ©.399499917 5.2563136457
96 93 £,999999740 5.757544041
128 126 £.99999994C 6.154276848
X 182 138 0,999999940 6.501723766
'. . 232190 $.999993940 6.82668'137
o 224 223 C©,999499917 7.147919736
:}:; 238 235 0.999499977 7.433013630
N 288 287 €,999999940 7.853713989
G 32T 322 0.996999919 8.,299383163
SR 32 252 2,999999940 §.913649559
:.: Surber ¢f simulation runs=2000
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Table 24: k=0.9995, n=400

=L confidence  axpected-db

32 29 0.999999940 5.180879116
64 61 0.999999940 5.950780332
95 93 0.999999940 6.451091766
128 126 0.999999340 6.848046780
162 158 0.999999940 7.195380887
192  19C (£.999999940) 7.520209789
224 223 0,999999940 7.841574669
256 255 0.399499%17 8.176671982
288 287 (£.999999940 8.5481C0471
320 32¢ 0.99%9439977 8,993374825
3Zg  s=2 0,00000960940 9, £276£25008
zer of simulation runs=2000

23: rue m=640, m0=606, n=4000, number of simulation runs=2000

equals m, number of simulation runs=2000

Table
~, + i ~E
323 283 3,41542983 9.99699962 0.9932
6435 6C6 3,44C6476C 0.99749953 (0.9940
960 922 3.47614026 0,99899948 0,9942
1288 1253 3.50661421 0,99899954 0,9944¢
TETS 1576 3.5€07°173  0,99899942 (0,9947
13230 1899 3,63243365 0,929949944 0.99%50
£Lal 2223 3,€9857264 0.99349974 0,9933
ZIET 2546 3.83282208 0.99949956 0.9959
882 2869 4,0608878. £.99949974 0.9968
32C°C 3192 4,57958984 0.99949974 0,9981
REJN, 3516 .5,94721780 0,99949922 0,939%
Table 26: n=4000, mest
= m7  cgntigence exgested-dg
3Z0 283 0.997499466 2.632653475
640 606 0.997499576 3.44C647602
9E3 629 0.937999489 3,980712652
1280 1253 0.9979996€8 4.4C0940(940
1623 1574 (0.9374997&84 4.811255932
1920 1893 2.998449596 5.208167103
2240 2273 £.998999715 5.595121861
Z3€5 2%4€ (.997999668B 6.063158512
SE32 2863 $,997499883 6.639555435
3223 2132 2.997499883 7.61945C092
Kl 35z S 3275934667 Q =23°372~24"13
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§ 5.5 Comparisons

Based cn the results of the numerical computations ard simulations, we have the
following conclusions. If the burn-in lot size is small, n=400, and the true value of m
can be estimated reasonably accurately, then using Piocedure O is the best choice. The
reason is that Procedure C will give us the exact confidence with tha minimum expected
duration of burn-in if m is known. Foi example, let us look at the case m = mest = 64,
Procedure O has t-delta = 4.34, Procedure I has E(D) = 5.2 and Procedurz IT has E(D)
= 4.00. Here, the expected duration tor I'rocedure II is less than t-delta of Procedu:z
0. This difference can be due to the randomness of the nurnber strings generated by
computer. Ia this example, the expected duxation of burn-in for Procedure I is the
longest one. Moreover, in this small lot size case, if the dispersion in m is large or the
value of m» is unpredictable, Procedure I would be a good choice, bzcause Procedure 1
i3 less sensitive 1o the assumed m, mest, than Procedure 0. Here, we may use
Procedure II, but the large sampue theory for this procedure is not applicable and k must
be obtained either from a direct calculation: or simulaticn. The value of k obtained by
using simulation turas out to give us the best burn-in procedure: it is not sensitive to the

assumed value of m and its duration of burn-in is close to the minimum requirement.

On the other hand. if the burn-in Int size is large, n=4000, Procedure 1II is
recommended. In this case, Procedure Il is not only very irsensitive to the assumed
value of m but also its expected duratiop of burn-in is close to the minimum required
duration of burn-in. Here, we may use Procedure 0, but the risk of not achieving our
reli.bility goal is very great if the value of m is ninder-estimated. Procedurs [ is less

sensitive than Procedure 0, but it 1equires a longer duration of bum-in.
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CHAPTER 6
CONCLUSION

§6.1 Summary

Three bum-in procedures have been considered in this research. The performances
of :hese procedures were compared in the previous chapter. When the iot size is
small, we can consider using Procedure 0 if m can be accurately estimated, or using
Procedure 1. In this small lot size case, if a bum-in procedure which is very
insensitive to the assumed vaiue of m is required and the duration of burn-in is
required to be as short as possible, then we can try to use simuation to find an
approprizte k 2nd use Procedure II. When the lot size is large, Procedure I is the first
procedure to be considered. This procedure is very insensitive to the assumed value
of m and its expected duration of burn-in 13 very close to the duration of burn-in
wher the number of defective items is known, i.e., the minimum require: burn-in
time. In ibis case, Procedure 0 is unable to achieve our reliability if m is under
estimated and its expected duration of bum-in is too long if m is over estimated too
much. Here, we can consider to use Procedure 0 only if we ¢an very accurately
estimate the unknown value m. For the large lot size case, Procedure I is not
recommended. The reascns are: if we can accurately estimate the true value of m, then

Procedure 0 performs berter than Procedure I; and if we cannot accurately estimate the
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b true value of m, then Procedure I is much more sensitive than Procedure II and it has

- longer expected duration of burn-in than Proceduse !1.
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§6.2 Related Research and Future Research

The original motivation of this dissertation was to design non-replacement burn-in
procedures for a batch of semiconductors with a known life time distribution
(parameters are known) and an unknown proportion of defec*ive items. The cost of
burn-in is considered in this research, but no coat funciion is given here. Burn-in
procedure with replacement is not considered, either. Burn-in with known life time
distribution but with unknown parameters should be considered, too. In addition, the
consideiation of component burn-in and of system burn-in are not the same. Some of

these topics are mentioned in Jensen and Petersen (1982)

For consideration of cost, see Kuo and Kuo (1983) for a very good summary
about the existing burn-in cost models. A very comprehensive list of the existing
papers about cost consideration is given in this paper. The references about this
subject will not be given here. Kuo and Kuo also have a good discussion about cost
minimization and savings. In addition, some warnings on cost modeling and cost

optimization are presented in thei- paper.

A with-replacement burn-in procedure for the case that the parameter of the life
tinie distribution of the defective items is unknown, was considered briefly during the
preparation of this dissertation. If the life time of the perfect items is assumed infinity,
then some process that is derived from the burn-in procedure is a birth-and-death
process. Statistical inference about the parameters of a birth-and-death process can be

found easily in Billingsley (1961) or Basawa and Prakasa Rao (1980).
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Another without replacement procedure was investigated during the preparation of
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z
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this dissertation. This procedure is obtained by finding an estimator of m . From

)ul 74 .

:_: Epstein and Sobel (1954), we know that 2 times the sum of the life times of the first j

138
rsl

failed defective items plus 2(m;j) times the lifetime of the jth failed defective item has

O

a x2 distribution with 2j degrees of freedom. Therefore, an estimator of m can be
calculated if an appropriate value is assumed for this %2 random variable (e.g., its
expeciation). A new stopping rule can be developed by replacing the MLE of m with
this estimator of m. This is the idea of this proccdure. The properties of the statistic
for this procedure have been studied briefly: this statistic is a linear combination of
o -ler statistics and its limit goes to a nonstationary Gaussian process with known

mean and variance. Some stopping times based on this statistic have been looked at,

but no satisfactory stopping time has been obtained yet. It will be studied further in

the future.
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Appendix

AP M AN 3
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.

We assume that M has a prior binomial distribution, say binomial(n,r). The

Lo

Ei‘ following two tables compare the relationship between the t*s, for Procedure I, derived

.:-:::': by using Equations (2.3.5) and (2.9.3). Here, ris E(M/n), rgg is the 99-percentile of

o M/n obtained by using the normal approximation, t*pyg is the t* obtained by using

i‘_r\ Equation (2.9.3), and t*(5,r) is the t* obtained by using (2.3.5) with m =ren. This last
: value is given as a reference for the t* which would be used if M were a known
-

constant,

T

B
r

A small n is used in Table 27. If r = .040 is used, then rgg = .06282, t*pg =
1.0419. In addition, t*(5,.06282) is 1.2370. In this table, we can see that *mg
increases as r increases and t*(5,1.99) is a step function in r. (The function t*(5,r g9) is
a step function in r becasuse it is a function of m-mo and m-mo is a step function in m
(or1)). The value t*ng gets close to the corresponding t*(5,r.99) as r increases before
t*(5,r 99) reaches a jump and then gets close again. Most of the time t¥(5,r gg) is
greater than t*1,, except before t*(5,r 99) has a jump. In addition, this table shows us

that t*mg is very close t*(5,r9g) when it is greater than t*(5,r 99).

A large n is used in Table 28, If r = .18 is used, then rgg = .194153, t*,g =

0.18767, t*(5,.194153) = 0.192248. We can see that t*(5,r 99) is always greater than

w *mg in this table. Furthermore, the difference between t*1, and t*(5,r 99) is less than
.';::, .02 for eachr.
rl
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- Table 27: n=400, 1-exp(-1)=.99, r=0.99, a=0.99
L~ r=m/n_ r99 Y mg t¥(5.r) 1*(5.r99)
o .02000 .03631 1.02266 1.01144 1.,23700
r-. .03000 .04987  1.03219 1.23700 1.23700
X .04000 .06282  1.041%1 1.23700 1.23700
o .05000 .07539 1.05183 1.23700 1.23700
.06000 .08766 1.06195 1.23700 1.23700
.07000 .09972  1.07229  1.23700 1.23700
h .08000 .11160 1.08285 1.23700 1.237CC
o .09000 .12334  1.09364  1.23700 1.23700
s .10000 .13495 1.10466 1.23700 1.23700
w .11000 .14645 1.11592 1.23700 1.23700
My .12000 .15785 1.12744  1.23700 1.23700
!i .13000  .16917  1.13921  1.23700 1.23700
X .14000 .18042  1.15126 1.23700 1.23700
e .15000 .19159  1.16358  1.23700 1.23700
o .16000 .20270 1.17619  1.23700 1.23700
5} .17000 .21376 1.18910 1.23700 1.23700
nt .18000 .22475 1.20232 1.23700 1.23700
;“ .19000 .23570  1.21586  1.23700 1.23700
e .20000 .24660 1.22974  1.23700 1.23709
~ .21000 .25745 1.243%6 1.23700 1.23700
» .22000 .26825 1.25855 1.23700 1.60943
o .23000 .27902 1.27350 1.23700 1.60943
i .24000 .28975  1.28885 1.23700 1.60943
?2 .25000 .30044 1.30460 1.23700 1.60943
.26000 .31110 1.32078 1.23700 1.60943
A .27000 .32172  1.33739  1.60943 1.60943
- .28000 .33230 1.35446 1.60943 1.60943
}}' .29000 .34286 1.37201 1.60943 1.60943
- .30000 .35338  1.39006 1.60943 1.60943
31000 .3e63e8 1.40862 1.60943 1.60943

Table 28: n=4000, 1-exp(-1)=.99, r=0.99, a=0.99

v
S

r=m/n rq9 *mg t*(5.r) 1*¥(5.r99)
e .04000 .047219 0.16346 0.15970 0.166094
! .06000 .068749 0.16650 0.16255 0.166094
N ,08000 .089994 0,16967 0.16619 0,166915
2 .10000 .111052 0.17297  0.1700Z  0.173930
v .12000 .131971  0.17641 0.17403  0.178152
¢ .14000 .152783  0.18000 0.17826  0.182599
b .16000 .173505 0.1€375 0.17826  0.182291
[} .18000 .194153 0.18767  0.18271  0.192248
” 20000 .214736 0.19178 0.18740 0.192248
¥ 22000 .235261 0.19608 0.19236 0.197494
V 24000 .255733  0.20059  0.19761  0.203056
) 26000 .276159 0.20533 0.19761  0.208964
7 28000 .296541  0.21031  0.20318 0.215253
4 .30000  .316882 0.21556  0.20909 0.221940
.
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